

{Department of Mathematics & Scientific Computing}

Programme: B.Tech. in Mathematics & Computing

	Jennester J					
Course No.	Course Name	L	т	Ρ	С	Course Type
MA-211	Numerical Methods and Computations	3	0	0	3	
MA-212	Discrete Mathematics	3	1	0	4	
MA-213	Probability and Stochastic Processes	3	1	0	4	
MA-214	Computer Organization & Architecture	3	0	0	3	Discipline core
MA-215	Data Structures	3	0	0	3	
MA-216	Data Structures Lab	0	0	4	2	
MA-217	Numerical Computations with MATLAB Lab	0	0	2	1	
	Total				20	

Semester 4

Semester 3

Course No.	Course Name	L	т	Ρ	С	Course Type
MA-221	Linear Algebra and Applications	3	0	0	3	
MA-222	Real and Complex Analysis	3	1	0	4	
MA-223	Object Oriented Programming	3	0	0	3	
MA-224	Applied Statistics and Statistical Inference	3	0	0	3	Discipline core
MA-225	Applied Statistical Methods Lab	0	0	2	1	
MA-226	Object Oriented Programming Lab	0	0	4	2	
MA-24X	Discipline Elective-1	3	0	0	3	Discipline Elective
SA-20X	LA/CA	1	0	0	1	Institute Elective
	Total				20	

Semester 5						
Course No.	Course Name	L	т	Ρ	С	Course Type
MA-311	Number Theory and Abstract Algebra	3	0	0	3	
MA-312	Operations Research	3	0	0	3	
MA-313	Computer Networks	3	0	0	3	Discipline core
MA-314	Database Management Systems	3	0	0	3	
MA-315	Database Management Systems Lab	0	0	4	2	
MA-35X	Discipline Elective-2	3	0	0	3	Discipline Elective
XX-30X	Open Elective	3	0	0	3	Institute Electives
	Total				20	

Semester	6
	•

Course No.	Course Name	L	т	Ρ	С	Course Type
MA-321	Analysis and Design of Algorithms	3	1	0	4	
MA-322	Machine Learning	3	1	0	4	Discipline Core
MA-323	Machine Learning Lab	0	0	4	2	
MA-34X	Discipline Elective -3	3	0	0	3	Discipline
MA-36X	Discipline Elective -4	3	0	0	3	Elective
MA-381	Internet of Things	2	0	0	2	Stream Core
HS-321	Engineering Economics and Acountancy	2	0	0	2	Institute Core
	Total				20	

Semester 7

Course No.	Course Name	L	т	Ρ	С	Course Type
MA-411	Advanced Differential Equations	3	0	0	3	
MA-412	Theory of Computation	3	0	0	3	
MA-413	Operating Systems	3	0	0	3	Discipline Core
MA-414	Operating System Lab	0	0	4	2	
MA-415	Summer Training	0	0	0	2	
MA-43X	Discipline Elective-5	3	0	0	3	Discipline Elective
MA-451	Deep Learning	2	0	0	2	Stroom Coro
MA-471	Blockchain Technology	2	0	0 2 Stream Core		
	Total				20	

Semester 8

Course No.	Course Name	L	т	Ρ	С	Course Type
MA-498	Holistic Assessment	0	0	0	2	Institute Core
MA- 46X	Stream Elective -1	3	0	0	3	Stroom Floative
MA- 48X	Stream Elective -2	3	0	0	3	Stream Elective
MA-499	UG Project*	0	0	0	12	Discipline Elective
	Total				20	

Total

Open Elective

MA-301	Cyber Security
MA-302	Statistical Data Analysis
MA-303	Finite Element Method

Discipline Elective-1

MA-241	Integral Transform and Applications
MA-242	Mathematical Modeling and Simulation
MA-243	Mathematical Methods
MA-244	Calculus of Variations and Optimal Control

Discipline Elective-2

MA-351	Digital Design
MA-352	Computer Graphics
MA-353	Digital Image Processing
MA-354	Software Engineering

20

Discipline Elective-3

MA-341	Soft Computing
MA-342	Data Mining
MA-343	Cryptography and Network Security
MA-344	Compiler Design

Discipline Elective-4

MA-361	Financial Mathematics
MA-362	Optimization Techniques
MA-363	Applied Multivariate Statistical Analysis
MA-364	Time Series Analysis and Forecasting

Discipline Elective-5

MA-431	Functional Analysis
MA-432	Fractional Differential Systems
MA-433	Topology
MA-434	Measure Theory

Stream Elective-1

MA-461	Mathematical Biology
MA-462	Data science
MA-463	Natural Language Processing

Stream Elective-2

MA-481	Fractals and Chaos
MA-482	Statistical Quality Control
MA-483	Cloud Computing

Minor in Mathematics

Course No.	Course Name	L	Т	Ρ	С	Semester
MA-310	Algebra	3	0	0	3	5th
MA-320	Analysis	3	0	0	3	6th
MA-410	Differential Equations	3	0	0	3	7th
MA-420	Statistics	3	0	0	3	8th

Syllabus

Course Name: Numerical Methods and Computations Course Code: MA-211 Course Type: Discipline Core

Contact Hours/Week: 03L

Course Credits: 03

Course Objectives:

- To increase the problem-solving skills of engineering students using powerful tools of numerical methods.
- To enhance the capability of handling large systems of equations that are common in engineering practice.
- To learn to interpolate data useful in computer visualization.
- To introduce the numerical methods for solving ordinary differential equations.

Unit No.	Course Content	Lectures
UNIT-01	Numerical Solution of Linear Equations:	8
	Errors: Definition and sources of errors, Relative and Percentage error,	
	Round-off and Truncation errors.	
	Linear Equations: Diagonally dominant systems, Jacobi and Gauss	
	Seidel Iteration methods, Necessary and sufficient conditions for	
	convergence of iteration methods.	
UNIT-02	Numerical Solution of Non-Linear Equations:	4
	Non-Linear Equations: Bisection Method, Regula-Falsi Method,	
	Newton-Raphson Method, Iteration method, Order of convergence.	
UNIT-03	Curve fitting:	5
	Least square curve fitting: Linear, Reducible to linear, Quadratic, and	
	Exponential fit. Evenly and unevenly spaced data points,	
UNIT-04	Interpolation:	5
	Finite differences and difference operators, Lagrange's interpolation,	
	Newton's forward, backward and, divided difference interpolation	
	formulae.	
UNIT-05	Numerical Integration:	6
	Newton-Cotes general formula: Trapezoidal rule, Simpson's-1/3 rule,	
	Simplson's-3/8 rule and their composite formulas, Errors in	
	integration, Romberg integration method.	
UNIT-06	Numerical Solution of Ordinary Differential Equations:	8
	Euler's method, Modified Euler's method, Runge- Kutta of second and	
	fourth order method, Predictor corrector method: Adams-Bashforth-	
	Moulton method of fourth order.	

Course Outcomes

Upon successful completion of the course, the student will be able

CO1: Understand numerical techniques to find the roots of non-linear equations.

CO2: Understand difference operators and use of interpolation.

CO3: Understand numerical differentiation and integration and numerical solutions of ordinary differential equations.

Text Books: -

- 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New age International Publisher, India, 5th edition, 2007.
- 2. B. Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, India, 2007.
- 3. Richard L. Burden, J. Douglas Faires Numerical Analysis, 9th Edition, Cengage India Private Limited (2010)

Reference Book:

4. K.E. Atkinson, W. Han, Elementary Numerical Analysis, 3rd Edition, Wiley, 2003.

Course Name: Discrete Mathematics Course Code: MA-212

Course Type: Discipline Core

Contact Hours/Week: 03L +01T

Course Objectives:

- To introduce the concepts of mathematical logic.
- To introduce the concepts of sets, relations, and functions.
- To relate practical examples of the appropriate set, function, or relation model.

Course Credits: 04

• To use graph theory for solving problems.

 IO US 	e graph theory for solving problems.	
Unit No.	Course Content	Lectures
UNIT-01	 Logic: Proposition, predicate logic, logic operators, logical equivalences, quantifiers and proof methods Set Theory: Sets, set operations, fuzzy set, principle of inclusion and exclusion Induction: Principle of mathematical induction, weak and strong forms. 	8
UNIT-02	Functions: Functions, piecewise functions, spcial functions: floor, ceiling etc, Bijection, The Pigeonhole Principle, Composition of Functions, discrete numeric functions, Growth of Functions: Big-Oh, Little-oh notations.	8
UNIT-03	Relations : Boolean Matrices, Boolean operations, Adjacency Matrix, Digraph, Properties of relations: reflexive, symmetric, transitive, transitive closure, Warshall's Algorithm, Equivalence relation, Partial order relation, POSET, Comparable elements, Hasse diagram.	8
UNIT-04	Recurrence relations: Recursive problems: handshake problem, tower of brahma, Fibonacci numbers etc, solution of recurrence relations, Linear Homogeneous and Nonhomogeneous Recurrence Relations with Constant Coefficients, Generating functions	8
UNIT-05	Graph Theory: Simple graph, Subgraph, complete graph, cycle, wheel, bipartite graph, weighted graph, isomorphic graph, path, cycle, circuits, Eulerian, Hamiltonian graphs, Planar graph, graph coloring, chromatic number.	8
UNIT-06	Tree: Introduction to Trees, Forest, Spanning trees, Bipartite matching, vertex cover, edge cover, independent set, M- alternating path, Hall's Theorem, König-Egeváry Theorem, Gallai's Theorem	8
CO1: Ability to CO2: Underst	mes: Upon successful completion of the course, the student will be able o apply mathematical logic to solve problems. and sets, relations, functions, and discrete structures. solve the real-world problems using graphs and trees.	to

Books and References

- 1. Discrete Mathematics with Applications by T. Koshy, Academic Press.
- 2. R. Diestel, Graph theory, Fourth edition, Graduate Texts in Mathematics, 173, Springer, Heidelberg, 2010.
- 3. Discrete Mathematics and Its Applications by K. H. Rosen, Tata McGraw-Hill.

Course Name: Course Code: N	Probability and Stochastic Processes	
Course Type: D	-	
Contact Hours/	•	redits: 04
Course Objectiv		
•	erstand the language of probability theory and to solve probabilistic pro	blems in
enginee	ering.	
 To under 	erstand the basic concepts of probability theory, random variables, conc	litional
probabi	lity.	
	duce students to basic methodology, distributions and apply it to probl	ems.
	art knowledge of analysis of random processes.	
Unit Number	Course Content	Lectures
UNIT- 01	Introduction to Probability: Probability Space, Axioms of probability,	3
0	Conditional probability, Total probability, Bayes theorem.	
	Random variables and Distribution Functions: Types of Random	
UNIT- 02	variables, Probability mass function, probability density function,	6
	properties, Moments, Moment generating function, Characteristic	
	function and their properties.	
	Two Dimensional Random Variables: Joint distributions, Marginal	
UNIT- 03	and conditional distribution, Covariance, Function of a random	9
	variable, Transformation of random variables, Central limit theorem.	
UNIT- 04	Discrete Distributions: Uniform, Bernoulli, Binomial, Poison,	7
	Negative Binomial, Geometric and their properties.	
	Continuous Distributions: Rectangular, Normal, Exponential,	8
UNIT- 05	Gamma, Weibull distributions and their properties.	
	Random Processes & Markov Chains: Definition of Stochastic	
	process, Classification and properties of stochastic processes,	5
UNIT- 06	Random Walk, Transition Probability Matrix, Classification of States	
	and Chains, Transient and Persistent.	
	Markov Process with discrete State Space: Discrete and continuous	-
UNIT- 07	time Markov chains, Classification of states, Limiting distribution,	5
	Poisson process and related distributions.	
	Generalization of Poisson Process: Pure Birth and pure death	-
UNIT- 08	processes, Birth and death process, Chapman Kolmogorov Equations,	5
<u> </u>	Ergodicity of homogeneous Markov process, Erlang process.	
Course Outcom		
•	l completion of the course, the student will be able to: In probabilities and to solve an appropriate sample space.	
	various operations like expectations from probability density functions a	nd
	bution functions.	inu
• •	e concept of random process, Stochastic Process.	
•	principles of random process and application to various fields.	
Text Books		
	duction to Probability and Statistics, VK Rohatgi, AK Saleh, Wiley, 2008.	
	a and VK Kapoor, Fundamentals of Mathematical Statistics, S. Chand Pu	blications
	th Edition, 2019.	
•	, Stochastic Processes, New age International Publisher, India, 4th Editi	on, 2017
Reference Book	· · · · · · · · · · · · · · · · · · ·	·
	ller and Marylees Miller, John E. Freund's Mathematical Statistics with	
	ions, Pearson Education.	
	gg and A. T. Craig, Introduction to Mathematical Statistics, Fourth editio	n,
	n Publishing Company, 1978.	

	de: MA-214 pe: Discipline Core	
		Credits: 03
Course Ob	jectives	
	impart basic concepts of computer architecture and organization.	
	explain key skills of constructing cost-effective computer systems.	
	familiarize the basic CPU organization.	
	help students in understanding various memory devices.	
	facilitate students in learning IO communication.	
Unit No.	Course Content	Lectures
UNIT-01	Introduction: Historical overview, economic trends, underlying	6
	technologies, Data Representation- Data Types, Complements. Fixed-	
	Point Representation, Floating-Point Representation. Error Detection	
	and Correction, Addition, Subtraction, Multiplication and Division	
	algorithms and hardware.	
UNIT-02	Register Transfer and Micro operations: Register transfer language,	8
	Inter-Register Transfer, Arithmetic Microoperations, Logic and Shift	
	micro-operations Language, Control functions. Arithmetic Logic Unit:	
	Arithmetic, logic and shift micro operations. Constructing an arithmetic logic shift unit.	
UNIT-03	Basic Computer Architecture and Design: Computer registers,	5
01011-05	Computer Instructions-Instruction Set Completeness. Classifying	5
	Instruction Set Architecture. Basic steps of Instruction Execution,	
	Hardwired Control, Micro programmed Control. Horizontal and Vertical	
	Microprogramming. Interrupts.	
UNIT-04	Central Processing Unit: General Register Organization. Stack Organized	5
	CPU. Instruction Formats, Addressing Modes. Data Transfer and	5
	Manipulation. RISCVs CISC.	
UNIT-05	Memory Organization: Memory Systems: principle of locality, principles	5
	of memory hierarchy Caches, associative memory, main memory,	_
	Virtual memory, Paging and Segmentation, Memory Interleaving.	
UNIT-06	Input Output Organization: I/O performance measures, types and	7
	characteristics of I/O devices, I/O ModesProgrammed I/O, Interrupt	
	Initiated I/O and DMA. Buses: connecting I/O devices to processor and	
	memory, interfacing I/O devices to memory, processor, and operating	
	system.	
Course Ou	tcomes	
•	essful completion of the course, the student will be able to	
	n the fundamentals of computer organization and its relevance to classical a	and moderi
•	blems of computer design.	
	ntify where, when and how enhancements of computer performan	ice can be
	omplished.	
	rn the sufficient background necessary to read more advance texts as we	II as journa
	cles on the field.	
	how to use concepts of computer organization in real-life settings using	g various Po
-	formance improvements.	
	er System Architecture, M.M. Mano, Pearson Education, 3rd Edition 1993.	
•	er Organization & Design-The Hardware/Software Interface, David A. Patters	on and Job
•	y, Morgan Kaufmann, 2nd Edition 1997.	
	er Organisation and Architecture, Designing for Performance, William Stallir	lgs Pearson
	Asia, 6th Edition 2003.	-03, i cui 301
	entals of Parallel Processing, Harry F. Jordan and Gita Alaghband, Pearson Ed	lucation. 1s
Edition 200		
	Programming, Barry Wilkinson Michael Allen, prentice hall, 1999.	

	me: Data Structures de: MA-215	
	pe: Discipline Core	Cue d'ite: 02
	-	Credits: 03
Course Ob	-	
	o impart the basic concepts of data structures and algorithms.	
	o understand concepts about searching and sorting techniques.	
	o understand basic concepts about queues, lists, trees and graphs.	ina
	o understanding about writing algorithms and step by step approach in soly oblems with the help of fundamental structures.	VILIB
Unit No.	Course Content	Lecture
UNIT-01	Introduction: Data types, abstract data types, the running time of a	7
	program, the running time and storage cost of algorithms, complexity,	/
	asymptotic complexity, big O notation, obtaining the complexity of an	
	algorithm. Development of Algorithms: Notations and Analysis.	
UNIT-02	Linear Data Structures: Storage structures for arrays - sparse matrices -	9
0111-02	structures and arrays of structures. Stacks and Queues:	9
	Representations, implementations and applications, singly linked lists,	
	Linked stacks and queues, operations on Polynomials, Doubly Linked	
	Lists, Circularly Linked Lists, Operations on linked lists- Insertion,	
	deletion and traversal, dynamic storage management – Garbage	
	collection and compaction.	
UNIT-03	Sorting and Searching Techniques: Bubble sorting, Insertion sort,	8
0111-05	Selection sort, Shell sort, Merge sort, Heap sort, Quick sort, Radix sort	0
	and Bucket sort, Sequential searching, Binary Searching	
UNIT-04	Trees: Basic terminology, General Trees, Binary Trees, Tree Traversing:	6
	in-order, pre-order and post- order traversal, building a binary search	Ū
	tree, Operations on Binary Trees - Expression Manipulations - Symbol	
	Table construction, Height Balanced Trees (AVL), B-trees, B+ -trees.	
UNIT-05	Graphs: Basic definitions, representations of directed and undirected	6
	graphs, the single-source shortest path problem, the all-pair shortest	
	path problem, traversals of directed and undirected graphs, directed	
	acyclic graphs, strong components, minimum cost spanning trees,	
	articulation points and bi-connected components, graph matching.	
Course Ou		I
Upon succ	essful completion of the course, the student will be able to :-	
•	ze algorithms and algorithms correctness.	
CO2: Sum	marize searching and sorting techniques.	
CO3: Desc	ribe, stack, queue, and linked list operation.	
CO4: Have	e knowledge of tree and graph concepts.	
Books and	References:	
1. Ah	o, Hopcraft and Ullman. Data structures and Algorithms, Addison Wesley.	
2. Ho	rowitz and Sahni, Fundamentals of Data Structures, Computer Science Pres	SS.
3. Wi	rth, Algorithms + Data Structures = Programs, PHI.	
	rmen, Leiserson, Rivest and Stein, Introduction to algorithms, Prentice Hall	
5. Da	ta structure with C, Seymour Lipschutz TMH.	
6. Da	ta structures using C, Reema Tharej, Oxford.	

Course Name: Data Structures Lab Course Code: MA-216

Course Type: Discipline Core Contact Hours/Week: 04P

Course Credits: 02

Course Objectives

- To understand the basics of writing different types of programs.
- To learn sorting method to arrange a list of integers.
- To perform various operations.

List of Experiments

- 1. Write a program that uses functions to perform the following:
 - a) Create a single linked list of integers.
 - b) Delete a given integer from the above linked list.
 - c) Display the contents of the above list after deletion.
- 2. Write a program that uses functions to perform the following:
 - a) Create a doubly linked list of integers.
 - b) Delete a given integer from the above doubly linked list.
 - c) Display the contents of the above list after deletion.
- 3. Write a program that uses stack operations to convert a given infix expression into its postfix equivalent, Implement the stack using an array.
- 4. Write programs to implement a double ended queue ADT using
 - a) array and
 - b) doubly linked list respectively.
- 5. Write a program that uses functions to perform the following:
 - a) Create a binary search tree of characters.
 - b) Traverse the above Binary search tree recursively in post-order.
- 6. Write a program that uses functions to perform the following:
 - a) Create a binary search tree of integers.
 - b) Traverse the above Binary search tree non recursively in in-order.
- 7. Write programs for implementing the following sorting methods to arrange a list of integers in ascending order:
 - a) Insertion sort
 - b) Merge sort.
- 8. Write programs for implementing the following sorting methods to arrange a list of integers in ascending order:
 - a) Quick sort
 - b) Selection sort.
- 9. Write a program to perform the following operation:
 - a) Insertion into a B-tree
 - b) Write a C program for implementing Heap sort algorithm for sorting a given list of integers in ascending order.
- 10. Write a program to implement all the functions of a dictionary (ADT) using hashing.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to: -

- CO1: Identify and abstract the programming task involved for a given problem.
- CO2: Design and develop object-oriented programming skills.
- CO3: Trace and debug a program.

Course Name: Numerical Computations with MATLAB Lab Course Code: MA-217

Course Type: Discipline Core Contact Hours/Week: 02P

Course Credits: 01

Course Objectives

- To understand basic representation of vectors in MATLAB.
- To learn basic programming structures in MATLAB.
- To become conversant with 2D as well as 3D graphics in MATLAB.
- To understand how to develop algorithm to solve algebraic as well as transcendental equations.

List of Experiments

- 1. Introduction to MATLAB interface: Desktop, Variables, Data Types, Vectors and Arrays, Script and Function Files, Two- and Three-dimensional Plotting, Conditional Statements (ifelse, while, switch) and Loops, Symbolic Computations.
- 2. Develop algorithm and codes to solve algebraic and transcendental equations using
 - a. Bisection method
 - b. Regula-Falsi Method
 - c. Newton Raphson method.
- 3. To develop algorithm and codes to solve system of linear equations by
 - a. Gauss Jacobi iteration method
 - b. Gauss Seidel iteration method.
- 4. Develop codes for finding value of dependent variable at particular point by
 - a. Newton's forward interpolation,
 - b. Newton's backward interpolation.
- 5. Develop codes for finding definite integrals using
 - a. Trapezoidal rule
 - b. Simpson's 1/3 and 3/8 rule
 - c. Romberg Integration.
- 6. Developing codes to find numerical solution of ordinary differential equation using
- 7. Euler's method,
- 8. Runge-Kutta (4th order) Method,
- 9. Explore the inbuilt functions (ODE23, ODE45 etc).

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes: At the end of the course student will be able to: -

CO1: Explain the various programming structures, functions in MATLAB.

CO2: Develop an understanding of MATLAB for designing systems.

CO3: Apply MATLAB for real time applications with ability to plot on graphics.

Course Name: Linear Algebra and Applications Course Code: MA-221 Course Type: Discipline Core

Contact Hours/Week: 03L

Course Credits: 03

Course Objectives

- To learn various system of linear equations, matrices and elementary row operations.
- To understand vector space and its application to different equations and Markov chains.
- To learn linear transformation, representation of linear transformation and application to differential equations.
- To understand inner product spaces, various operators and application of inner product spaces.

Unit No.	Course Content	Lectures
UNIT-01	System of Linear Equations: Matrices and elementary row operations, Row reduced echelon matrices, Homogeneous system of linear equations, Elementary matrices, LU Decomposition, some applications of Linear Systems.	5
UNIT-02	Vector Space : Fields, Vector Spaces over R and C, subspaces, linear independence, basis, and dimension of a vector space, ordered basis and co-ordinates. Application to difference equations and Markov chains.	7
UNIT-03	Linear Transformation : Linear transformations, Rank and Nullity of linear transformation, Algebra of linear transformation, Isomorphism, Invertible linear transformations, Dual and double dual of a vector space and transpose of a linear transformation, Matrix representation of Linear Transformation	8
UNIT-04	Diagonalization: Eigenvalue, and eigenvector of a linear transformation, Diagonalizability of linear operators of finite dimensional vector spaces, Application of eigen values and eigen vector	5
UNIT - 05	Inner Product Spaces : Gram-Schmidt orthogonalization, best approximation of a vector by a vector belonging a given subspace and application to least square problems	5
UNIT - 06	Operator: Adjoint of an operator, Hermitian, unitary, and normal operators, Singular Value Decomposition, Spectral decomposition, Applications of Inner product spaces, Applications of Linear algebra in data science, machine learning and real life.	6

Course Outcomes

Upon successful completion of the course, the student will be able to-

CO1: Understand various system of linear equations, matrices, and elementary row operations.

CO2: Describe vector space and its application to different equations and Markov chains.

CO3: Explain linear transformation, representation of linear transformation and application to differential equations.

CO4: Describe inner product spaces, various operators and application of inner product spaces.

Books and References

- 1. Geory Nakos and David Joyner: Linear algebra with Applications, Brooks/ Cole Publishing Company, International Thomson Publishing, Asia, Singapore, 1998,
- 2. David C. Lay: Linear algebra and its applications (3rd Edition), Pearson Education Asia, Indian Reprint, 2007,
- 3. Stephen H, Friedberg, Arnold J, Insel and LE, Spence-Linear Algebra, 4th edition, PHI, New Delhi, 2004.
- 4. Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press, 2016.

Course Name: Real and Complex Analysis
Course Code: MA-222
Course Type: Discipline Core

Contact Hours/Week: 03+01T

Course Objectives

- To impart knowledge about real number system and its various properties.
- To understand the sequence and series of real valued functions.
- To provide an introduction to the theories of functions of a complex variable. In particular, the notion of analyticity, completeness, compactness with some fundamental theorems.

Course Credits: 04

• To provide knowledge of singularities, residues and various series expansions of complex valued functions.

Unit No.	Course Content	Lectures
UNIT-01	Real Number System: Sets, functions, real number system and its completeness property, order property, Nested Intervals Property.	5
UNIT-02	Sequences and Series: Sequence, convergence, monotone sequence, Subsequences, Bolzano-Weiestrass theorem, Cauchy criterion, Convergence of series, Comparison test, Ratio test	5
UNIT-03	Limit and Continuity: Cluster point, Limit of a function, Limit theorem, Sequential criterion, continuity, composition of continuous maps, uniform continuity, continuity on intervals, minimum maximum theorem, uniform continuity,	5
UNIT-05	Differentiability: The derivative, Caratheodory'sTheorem, Chain rule, Mean value theorem, L'Hospital rule,	5
UNIT-06	Riemann Integration: Tagged partition, Riemann sum, Cauchy Criterion, Squeeze Theorem, Fundamental Theorems of Calculus.	6
UNIT-07	Complex valued functions: Functions of a complex variable: continuity, differentiability, analytic functions, harmonic functions; Complex integration: Cauchy's integral theorem and formula; Liouville's theorem, maximum modulus principle, Morera's theorem; zeros and singularities;	10
UNIT-08	Complex valued functions: Power series, radius of convergence, Taylor's series and Laurent's series; Residue theorem and applications for evaluating real integrals; Rouche's theorem, Argument principle, Schwarz lemma; Conformal mappings, Mobius transformations.	12

Course Outcomes:

Upon successful completion of the course, the student will be able to :-

CO1: Learn about some of the classes and properties of Riemann integrable functions.

CO2: Learn about analytic functions and their importance.

CO3: Learn about Cauchy criterion for uniform convergence and Weierstrass M-test for uniform convergence.

CO4: Learn about Power series of complex valued functions and formulas to find radius of convergence for them.

Books and References

1. Introduction to Real Analysis , R.G. Bartle & D.R. Sherbert, Wiley.

2. Complex Analysis, E.M. Stein & R. Shakarchi, Princeton University Press.

3. Complex Analysis for Mathematics and Engineering by J.H. Mathews and R.W. Howell, Narosa Publishing House.

4. Mathematical Analysis by T. M. Apostol, Addison-Wesley Publishing Company.

Contact Hou	: Discipline Core		
Contact Hou			
	Contact Hours/Week: 03L Course Credits:		
Course Objec	ctives		
 To lease 	arn the basic concepts of object-oriented programming and differentiate b	etween	
	tured and OOPs languages.		
	arn about arrays, pointers and functions.		
	entify and understand data types, operators and various classes and object	IS.	
	arn and understand about various types of inheritances.		
	arn files and exception handling.	Locture	
	Course Content	Lecture	
UNIT-01	Concepts of Object-Oriented Programming : Object Oriented Programming Paradigm, Basic concepts of OOPs, Benefits of OOPs, and Introduction to object-oriented design and development, Design steps, Design example, Object oriented languages, Comparison of structured and object-oriented programming languages.	6	
UNIT-02	Arrays, Pointers, and Functions: Arrays, Storage of arrays in memory, Initializing Arrays, Multi- Dimensional Arrays, Pointers, accessing array elements through pointers, passing pointers as function arguments, Arrays of pointers, Pointers to pointers, Functions, Arguments, Inline functions, Function Overloading Polymorphism.	6	
UNIT-03	Classes and Objects: Data types, operators, expressions, control structures, arrays, strings, Classes and objects, access specifiers, constructors, destructors, operator overloading, type conversion.	8	
UNIT-04	Inheritance: Inheritance, single Inheritance, Multiple Inheritance, Multi-level inheritance, hierarchical inheritance, hybrid inheritance, Virtual functions.	7	
UNIT-05	Files and Exception Handling : Opening and closing a file, File pointers and their manipulations, Sequential Input and output operations, multi- file programs List of exceptions, catching exception, handling exception, Standard Template Library.	9	
Course Outco	omes		
•	sful completion of the course, the student will be able to- the basic concepts of object-oriented programming and compare structed	l and OOP	
	tand about arrays, pointers and functions.		
	various classes and objects.		
	tand and identify various types of inheritances.		
	tand files and exception handling techniques.		
Books and Re			
•	ne Stroustrup, The C++ Programming Language, 3rd, Pearson Education		
3. H.M	an, S. B. C++ Primer, 3rd ed. Pearson Education. . Deitel, P.J Deitel, "Java: how to program", Fifth edition, Prentice Hall of Ir	ndia	
	te limited. ert Schildt, "The Java 2: Complete Reference", Fourth edition, TMH.		

	Discipline Core	
Contact Hours		03
Course Objecti		
	pute various measures of central tendency, dispersion, skewness,	kurtosis and
	ty of data. rt knowledge about the concept of correlation, regression and hypothe	cic tocting
•	duce the fundamental concepts relevant to Hypothesis testing and its	-
tests.		o companio
• To enab	le the students to understand the concept of Non-Parametric tests	
Unit	Course Content	Lectures
Number		
	Introduction: Data collection Types of data, sources of data	
	collection -discussion of different situations. Measures of central	
UNIT- 01	tendency, dispersion, skewness, kurtosis, data representation	04
	using Histogram, Pie Chart, Boxplot, Biplot, Multidimensional	
	scaling.	
	Estimation: Problem of estimation; point estimation, interval	
	estimation, criteria for a good estimator, unbiasedness, consistency, efficiency and sufficiency with examples. Method of	
UNIT- 02	moments and maximum likelihood and application of these	08
0111-02	methods for obtaining estimates of parameters of binomial,	08
	Poisson and normal distributions, properties of M.L.E's (without	
	proof), merits and demerits of these methods.	
	Correlation and regression analysis: Simple correlation and linear	
UNIT- 03	regression model, curve fitting by least squares, tests of	04
0111-05	significance of correlation and regression coefficients, coefficient	04
	of determination, spearman's rank correlation.	
	Hypothesis Testing: Types of errors and power - most powerful	
UNIT- 04	tests, Test for equality of means and variances – t and F test; Chi- square test for goodness of fit and independence of attributes,	10
	Analysis of variance with one–way and two–way classifications.	
	Multiple Comparison Tests: Least Significant Difference, Student-	
UNIT- 05	Newman–Keuls test, Duncan's Multiple Range test, Tukey's test	04
	Non Parametric Tests: Sign test, Signed rank test, Median test	
UNIT- 06	,Mann-Whitney test, Run test and One sample Kolmogorov –	06
	Smirnov test	
Course Outcon		
•	ul completion of the course, the student will be able to-	a alivaa data
•	and describe the data types and prepare the hypothesis according to th atistical tests to the real time data set and draw the conclusions.	e given data
	e statistical interpretation of the data.	
Test Books		
	gomery, G.C. Runger, Applied Statistics and Probability for Engineers, 5 th	Edition, Joh
	Sons, 2011.	
2. S. C. Gupt	a and V.K. Kapoor, Fundamentals of Applied Statistics, Sultan Chand.	
-	asella and Roger L Berger, Statistical Inference, 2nd Edition, Duxbur	y - Thomso
Learning (
Reference Boo		
	Snedcor, G. W. and Cochran, W. G., Statistical Methods, 7 th Edition	n, Iowa State
Unive	rsity Press, 1982.	

Course Name: Applied Statistical Methods Lab Course Code: MA-225 Course Type: Discipline Core

Contact Hours/Week: 02P

Course Credits: 01

Course Objectives

- To provide skills for designing worksheets and data import and export from different formats.
- To provide skills to write/create the hypothesis by observing the data.
- To enable the students to work and analyze the data.

List of Experiments

- 1. Introduction to SPSS and setting Up a Data File
- 2. SPSS Analysis: Windows Method versus Syntax Method and Missing data
- 3. Programs to Methods of MULT RESPONSE Procedures, Example of the Multiple-Dichotomy Method, Example of the Multiple-Response Method, Cross-Tabulations
- 4. Testing Statistical Significance between Two Correlation Coefficients Obtained from Two Samples
- 5. Spearman Rank Order Correlation Coefficient
- 6. Prediction Equation of Linear Regression and Multiple regression Analysis
- 7. Chi-Square Test for Single Variable Experiments and test of Independence between Two Variables
- 8. t Test for Independent Groups
- 9. Paired-Samples t Test
- 10. Analysis of Variance One-way and Two -way
- 11. Post Hoc Comparisons of ANOVA
- 12. Non-parametric tests: Kolmogorov Smirnov test, Mann-Whitney U test, Median test for k-sample problem, Kruskal Wallis test and Friedman's test

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on the above generic list.

Course Outcomes:

Upon successful completion of the course, the student will be able:

CO1: to identify and abstract the data type and suitable statistical tool for the data.

CO2: to design the data sheet.

CO3: to understand statistical analysis and writing interpretations.

Course Name: Object Oriented Programming Lab Course Code: MA-226 Course Type: Discipline Core

Course Objectives

Contact Hours/Week: 04P

- To learn about the simple operations and control structures of object-oriented programming.
- To learn the use of array, structure and union and function for various purposes.

List of Experiments

- 1. Demonstrate simple operations and control structures.
- 2. Demonstrate use of array :
 - a) Add two matrix using multi-dimensional arrays,
 - b) Searching in arrays, Array of Class, Operations on strings as arrays and to access array elements using pointers.
- 3. Demonstrate use of structure and union.
- 4. Demonstrate use of function by i) To swap numbers in cyclic order using call by reference and to check prime number by creating a function, ii) To find the multiplication values and the cubic values using inline function, iii) To calculate the area of circle, rectangle and triangle using function overloading.
- 5. Read and print students detail using class and object.
- 6. Demonstrate example of friend function with class.
- 7. Demonstrate increment ++ and decrement - variables by using operator overloading.
- 8. Write a program to demonstrate the single inheritance, multilevel inheritance, multiple inheritances, hybrid inheritance and hierarchical inheritance.
- 9. Write a program that shows that two files named 'Source 1' and 'Source 2' contains sorted list of integers. Read the content of both the files and stores the merged list in sorted form in a new file named 'Target'.
- 10. Write a function template to perform linear search in an array.
- 11. Write a program containing a possible exception. Use a try block to throw it and a catch block to handle it properly.
- 12. Write a program to demonstrate container i) using the find algorithm to locate the position of a specified value in a sequence container, ii) using the algorithm count to count how many elements in a container have a specified value.
- 13. Write a program to implement Vector in STL.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the student will be able:

CO1: to use arrays for different kinds of operations and structures.

Course Name: Number Theory and Abstract Algebra	
Course Code: MA-311	
Course Type: Discipline Core	
Contact Hours/Week: 03L	Course Credits: 03
Course Objectives	

- To impart knowledge about the Euclidean algorithm, residue, congruence inversion formula, recurrence function.
- To enable the students to understand the factors that causes the cryptography.
- To introduce the concepts of group, ring, ideal and factorization of polynomial ring which have vital applications in system security algorithms.

Unit	Course Content	Lectures
Number		
UNIT-01	Number Theory and Congruences: Basic definition and properties	7
	of number theory, solutions of congruences, theorems of Fermat,	
	Euler & Wilson, linear congruences and Chinese remainder	
	theorem, quadratic congruences.	
UNIT-02	Arithmetical Functions: Review of Arithmetic functions, Examples	7
	with some properties and their rate of growth, finite continued	
	fractions and their connections with Diophantine approximations,	
	applications to linear equations.	
UNIT-03	Group Theory:	8
	Groups, subgroups, normal subgroups, quotient groups,	
	homomorphisms, automorphisms; cyclic groups, permutation	
	groups, Group action, Sylow's theorems and their applications;	
UNIT-04	Ring Theory: Rings, ideals, prime and maximal ideals, quotient	7
	rings, unique factorization domains, Principle ideal domains,	
	Euclidean domains, polynomial rings, Eisenstein's irreducibility	
	criterion;	
UNIT-05	Fields: Fields, finite fields, field extensions, algebraic extensions,	7
	algebraically closed fields	

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Identify divisibility, residue, congruence, remainder, reciprocity, primality, factorization.

- CO2: Group theory and its applications in security systems.
- CO3: Factorization of polynomials and its application in solving some of the most important problems.

Books and References

- 1. David M. Burton, "Elementary Number Theory", (Fifth Edition) International Edition, McGraw Hill
- 2. Topics in Algebra by I.N. Herstein, Wiley India Pvt. Ltd.
- 3. Algebra Vol. 1, by Ramji Lal, Infosys Science Foundation Series. Springer Nature Singapore.
- 4. Contemporary Abstract Algebra by Joseph Gallian (Ninth edition ed.) Cengage Learning Boston.

	ame: Operations Research	
	ode: MA-312	
	ype: Discipline Core Hours/Week: 03L Course Cru	odite: 02
		euits. 05
р • Т • Т	o provide quantitative insight and understanding of fundamental methods rogramming problems. o demonstrate various methods to solve such problems. o introduce the transportation and assignment problems, arising in real life o give flavor of both sound theoretical foundation of various methods and ctual implementations in problems solving.	2.
Unit No.	Course Content	Lectures
UNIT-01	Linear Programming Problems: Linear programming models, convex sets, extreme points; Basic feasible solution, graphical method, simplex method, two phase methods, revised simplex method ; Infeasible and unbounded linear programming models, alternate optima; Duality theory, weak duality and strong duality;	12
UNIT-02	Transportation Problems: Balanced and unbalanced transportation problems, Initial basic feasible solution of balanced transportation problems (least cost method, north-west corner rule, Vogel's approximation method); Optimal solution by U-V Method, modified distribution method; Stepping Stone Method, Degeneracy in Transportation problem.	8
UNIT-03	Assignment Problems: Mathematical formulation, solution by Hungarian Method, unbalanced problem, maximization problem, Traveling Salesman problem and its solution.	8
UNIT-04	Network Analysis: Background, development, networking, estimating activity time, Determination of earliest expected and allowable times, determination of Critical Path, PERT cost, scheduling of a project, CPM and application of these methods.	8
CO1: Unc the appro CO2: Buil CO3: Des	utcomes cessful completion of the course, the student will be able to lerstand the characteristics of different types of decision-making environm opriate decision-making approaches and tools to be used in each type. d and solve Transportation and Assignment Models. ign new simple models, like: CPM, PERT to improve decision –making and o inking and objective analysis of decision problems.	
E 2. S 3. J. E 4. P Referenc	.S. Hillier and G.J. Libermann, Introduction to Operations Research, McGra dition, 2001. .D. Sharma, Operation Research, Kedarnath Ramnath & Co., 2002. K. Sharma, Operations Research: Theory and Applications, Macmillan Indi dition, 2007. . Paneerselvam, Operations Research, 2/e, PHI Learning Private Limited, 20	a Ltd., 3 rd)11
E 2. S	dition, 2017 . S. rao, Engineering Optimization: Theory and practice, New Age Internationul State Provide Age	

Course Type: Discipline Core Contact Hours/Week: 03L Course Cr		
Course Objecti	ves	
 To intro 	duce the concepts of basic Networks.	
 To prov 	ide basic knowledge of the data link layer.	
 To prov 	ide an overview of the Network layer and its applications layer.	
Unit Number	Course Content	Lectures
UNIT-01	Introductory: Goals and Applications of Networks, LAN, WAN,	5
	MAN, reference models: OSI, TCP/IP, Internet, Connection	
	oriented network - X.25, frame relay, ARPANET, INTERNET.	
UNIT-02	The Physical Layer: Theoretical basis for communication,	6
	transmission media, wireless transmission, Virtual circuits, Circuit	
	switching.	
UNIT-03	Data Link Layer: Design issues, error detection and correction,	6
	elementary data link protocols, sliding window protocols, example	
	data link protocols - HDLC, the data link layer in the internet.	
UNIT-04	Network Layer: Network Layer design issue, Routing algorithms,	7
	Congestion Control Algorithms, Internetworking.	
UNIT-05	Transport Layer: Transport services, Design issues, elements of	6
	transport protocols, simple transport protocols, Connection management, TCP, UDP.	
UNIT-06	Application Layer: Domain name system, electronic mail, World	6
	Wide Web, remote procedure call, Simple Network Management	
	Protocol, File Transfer Protocol, Simple Mail Transfer Protocol,	
	Telnet.	
Course Outcon	nes	
Upon successfu	I completion of the course, the student will be able to	
CO1: Understa	ind network layers, models, and architectures.	
CO2: Analyze	the performance of various routing and transport protocols.	
CO3: Solve bas	ic network design problems using knowledge of different layers in netw	vorking.
Books and Ref	erences	
1. Computer	Networks by A.S. Tanenbaum, Prentice Hall of India.	
2. Computer	Networking: A Top-Down Approach Featuring the Internet by J. Kurose	, K.W. Ro.
3. Data and C	omputer Communication by W. Stallings, Prentice Hall of India.	
1 Data Comm	nunication and Notworking by Forouzan E adition McGraw Hill Educat	ion

4. Data Communication and Networking by Forouzan, 5 edition, McGraw Hill Education.

	de: MA-314	
	pe: Discipline Core Durs/Week: 03L Course Cre	odite: 02
Course Ob	-	euits: 05
	introduce the concepts of basic SQL as a universal Database.	
	demonstrate the principles behind systematic database design approaches	hu covorin
	nceptual design, logical design through normalization.	by coverin
	provide an overview of physical design of a database system, by discussing	a Databas
	dexing techniques and storage techniques.	
Unit No.	Course Content	Lecture
UNIT-01	Basic Concepts: Introduction to File and Database systems- Database	7
	system structure – concepts and architecture, date models, schemas &	/
	instances, DBMS architecture & data independence, database languages	
	& interfaces, Data Model, ER model.	
UNIT-02	Relational Models : SQL – Data definition- Queries in SQL-relational	8
01111 02	model concepts, relational model constraints, relational algebra, SQL- a	0
	relational database language: date definition in SQL, view and queries in	
	SQL, specifying constraints and indexes in SQL; relational database	
	management systems-Updates, Views, Integrity and Security, Relational	
	Database design,	
UNIT-03	Normalizations: Functional dependencies and Normalization for	7
	Relational Databases, normal forms based on primary keys, (1NF, 2NF,	/
	3NF & BCNF), lossless join and dependency preserving decomposition	
UNIT-04	Data Storage and Query Processing: Record storage and Primary file	8
	organization- Secondary storage Devices, Operations on Files, Heap File,	0
	Sorted Files, Hashing Techniques, Index Structure for files, Different types	
	of Indexes- B-Tree – B + Tree, Query Processing.	
UNIT-05	Transaction Management : Transaction Processing, Need for Concurrency	6
	control, Desirable properties of Transaction, Schedule, and	U
	Recoverability, Serializability and Schedules; Concurrency Control, Types	
	of Locks, Two Phases locking, Deadlock, Timestamp-based concurrency	
	control, Recovery Techniques, Concepts- Immediate Update- Deferred	
	Update, Shadow Paging.	
Course Ou		
	essful completion of the course, the student will be able to	
•	ain the features of database management systems and Relational databases.	
	te and populate a RDBMS for a real-life application, with constraints and keys	
	I retrieve any type of information from a database by formulating complex	-
SQ		-
CO3: Anal	yze the existing design of a database scheme and apply concepts of norm	alization t
des	ign an optimal database and build indexing mechanisms for efficient r	retrieval o
info	prmation from a database.	
Books and	References	
1. Datal	base System Concepts by A. Silberschatz, H.F. Korth, S. Sudarshan, Tata McGr	aw-Hill.
2. Funda	amental Database Systems by R. Elmasri, S. B. Navathe, Pearson Education.	
3. An in	troduction to database concepts by B. Desai, Galgotia publications.	
4. An in	troduction to database systems by C.J. Date, Addison Wesley.	
5. Funda	amentals of database systems by E. Ramez, N. Samkanth, Pearson Education	
6. Princ	ples of database systems by J.D. Ullman, Galgotia Publications.	
7. Datal	base System Implementation by H. Garcia-Molina, J. D.Ullman and J. Wido	m, Pearso
Гduo	ation.	

Course Name: Database Management Systems Lab Course Code: MA-315

Course Type: Discipline Core Contact Hours/Week: 04P

Course Credits: 02

Course Objectives

- To present an introduction to database management systems using programming.
- To provide skills for writing programs.
- Familiar with basic database storage structures and access techniques.

List of Experiments:

- 1. Installing oracle/ MYSQL
- 2. Creating Entity-Relationship Diagram using case tools
- 3. Writing SQL statements Using ORACLE /MYSQL:
 - a) Writing basic SQL SELECT statements
 - b) Restricting and sorting data
 - c) Displaying data from multiple tables
 - d) Aggregating data using a group function
 - e) Manipulating data
 - f) Creating and managing tables
- 4. Normalization
- 5. Study and implementation of different types of constraints
- 6. Creating procedure and functions
- 7. Creating packages and triggers
- 8. Study and implementation of Rollback, Commit, and Savepoint commands
- 9. Design and implementation of Library Information System
- 10. Design and implementation of Student Information System
- 11. Study and implementation of Database Backup and Recovery commands

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on the above generic list.

Course Outcomes

Course Outcomes Upon successful completion of the course, the students will be able to

- CO1: Describe the fundamental elements of relational database management systems.
- CO2: Design ER-models to represent simple database application scenarios.

CO3: Improve the database design by normalization.

	de: MA-321 pe: Discipline Core	
		Credits: 04
Course Ob	•	
	teach paradigms and approaches used to analyze and design algorithms and	to
	preciate the impact of algorithm design in practice.	
	make students understand how the worst-case time complexity of an algorit	hm is
	ined, how asymptotic notation is used to provide a rough classification of alg	
	explain different computational models (e.g., divide-and-conquer), order not	-
	ious complexity measures (e.g., running time, disk space) to analyze the	
	nplexity/performance of different algorithms.	
Unit No.	Course Content	Lectures
UNIT-01	Algorithms Introduction: Algorithm Design paradigms- motivation,	6
	concept of algorithmic efficiency, run time analysis of algorithms,	
	Asymptotic Notations.	
UNIT-02	Divide and Conquer Approach: Structure of divide-and-conquer	6
	algorithms: sets and disjoint sets: Union and Find algorithms, quick sort,	
	Finding the maximum and minimum, Quick Sort, Merge sort, Heap and	
	heap sort.	
UNIT-03	Greedy Algorithms: Optimal storage on tapes, Knapsack problem, Job	6
	sequencing with deadlines,	
	Minimum Spanning trees: Prim's algorithm and Kruskal's algorithm,	
	Huffman codes.	
UNIT-04	Dynamic Programming : Overview, difference between dynamic	6
	programming and divide and conquer, Matrix chain multiplication,	
	Traveling salesman Problem, longest Common sequence, 0/1 knapsack.	
UNIT-05	Graph Algorithms: Representation of graphs, BFS, DFS, Topological sort,	7
	strongly connected components; single source shortest paths: Bellman-	
	Ford algorithm, Dijkstra's algorithm; All pairs shortest path: The	
	Warshall's algorithm, Backtracking, Branch and Bound: 8-Queen Problem,	
	Sum of subsets, graph coloring, Hamiltonian cycles. Branch and bound: LC searching Bounding, FIFO branch and bound, LC branch and bound	
	application: 0/1 Knapsack problem, Traveling Salesman Problem.	
UNIT-06	Computational Complexity : Complexity measures, Polynomial Vs Non	5
	Polynomial time complexity: NP-hard and NP-complete classes,	5
	examples.	
Course Ou		1
	essful completion of the course, the student will be able to	
•	se appropriate algorithm design techniques for solving problems and to unde	rstand hov
	choice of data structures and the algorithm design methods impact the perfo	
	grams.	
•	up troubles the usage of set of rules design methods including the grasping	g approach
divi	de and overcome, dynamic programming, backtracking and department and	certain.
CO3: Unde	erstand the variations among tractable and intractable problems and to intro	duce P an
NP	classes.	
	References	
	ction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, MIT	
	entals of Computer Algorithms by E. Horowitz and S. Sahni, S. Rajasekaran, L	Jniversitie
Press.		
	sign and Analysis of Computer Algorithms by A.V. Aho, J.E. Hopcroft and J.	.D. Ullmar
Pearson		
4. Data Str	uctures and Algorithmic Puzzles by N. Karumanchi, CareerMonk Publications	•
	prithm Design Manual by S. S Skiena, Springer.	

Course Code:	-	
	Discipline Core	Credits: 04
-		Lrealts: 04
Course Objecti		
	n the concepts of searching for AI problems.	
	n about agents and knowledge representation. introduced to fundamentals of machine learning.	
-	-	
Unit Number	n about the possibilities of Supervised and Unsupervised learning Course Content	Locturo
		Lecture: 6
UNIT-01	Introduction: Introduction to ML and AI, AI techniques, level of	O
	model, criteria for success, Turing test, Reactive, deliberative, goal-	
	driven, utility-driven, and learning agents Artificial Intelligence	
UNIT-02	programming techniques	0
UNIT-02	Foundations for ML: ML Techniques overview, Validation	8
	Techniques (Cross-Validations), Feature Reduction/Dimensionality	
	reduction,	-
UNIT-03	Machine Learning and Knowledge Acquisition: Overview of	8
	different forms of learning, Regression and classification, learning	
	decision tress, Support vector machine, Learning nearest neighbor,	
	naive Bayes.	-
UNIT-04	Problem Solving: Problem as a space, search, production system,	6
	problem characteristics, production system characteristics, solving	
	problems by searching, Heuristic search techniques, constraint	
	satisfaction problems, stochastic search methods.	_
UNIT-05	Knowledge Representation and Reasoning: Ontologies,	8
	foundations of knowledge representation and reasoning,	
	representing, and reasoning about objects, relations, events,	
	actions, time, and space; frame representation, semantic network,	
	predicate logic, resolution, natural deduction, situation calculus,	
	description logics, reasoning with defaults, reasoning about	
	knowledge.	
Course Outcon		
•	Il completion of the course, the student will be able to	
	nd the concept of artificial intelligence (AI) principles and its approaches	
-	nd formalize the problem as a state space, graph, design heuristics and s	elect
-	t different search or game-based techniques to solve them.	
	e and solve problems with uncertain information in machine learning usin	ng various
techniqu		
	owledge representation, reasoning, and machine learning techniques to r	eal-world
problems		
	ne concept of artificial intelligence in various practical/engineering/scient	TILC
situations		
Books and Ref		
	ntelligence by S. Kaushik, Cengage Learning India Pvt Ltd (2022).	
•	of Artificial Intelligence by N.J. Nilsson, Narosa Publishing House (1982).	4 7)
	ntelligence by E. Rich, K. Knight & S.B. Nair, McGraw Hill International (20	1/).
	earning, Tom Mitchell, Tata McGraw Hill India (2017).	
Artificial a	nd Machine Learning, Vinod Chandra SS, Anand Hareendran S, PHI Learn	ıng.

Course Name: Machine Learning Lab Course Code: MA-323

Course Type: Discipline Core Contact Hours/Week: 04P

Course Objectives

- To introduce students to the basic concepts and techniques of Machine Learning. .
- To become familiar with regression methods. .
- To become familiar with Dimensionality reduction Techniques.

List of Experiments

- 1. Implementation of Python Basic Libraries such as Statistics, Math, Numpy and Scipy.
- 2. Implementation of Python Libraries for ML application such as Pandas and Matplotlib.
- 3. Creation and Loading different datasets in Python
- 4. Write a python program to compute Mean, Median, Mode, Variance, and Standard Deviation using Datasets.
- 5. Write a python program to compute reshaping the data, filtering the data, merging the data and handling the missing values in datasets.
- 6. Write a Python program to implement Simple Linear Regression and plot the graph.
- 7. Implementation of Multiple Linear Regression for House Price Prediction using sklearn.
- 8. Implementation of Logistic Regression for iris using sklearn.
- 9. Implementation of random forest algorithm
- 10. Implementation of naive bayes classifier algorithm and plot the graph.
- 11. Implementation of SVM classification and plot the graph.
- 12. Implementation of PCA and LDA
- 13. Implementation of k-means clustering, hierarchical clustering, and Q-learning.
- 14. Performance analysis on a specific dataset (Mini Project).

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to: -

CO1: To introduce students to the basic concepts and techniques of Machine Learning.

CO2: To become familiar with regression methods.

CO3: To implement classification and clustering methods.

CO4: To become familiar with Dimensionality reduction Techniques.

	: Internet of Things	
Course Code:		
Course Type: Contact Hour		ite: 02
Course Objec	-	
	derstand the fundamentals of Internet of Things	
	entiate between IoT and M2M	
	irn about the basics of IOT protocols	
	erstand IoT architecture and IoT design constraints	
	uild a small low cost embedded system using Raspberry Pi	
Unit NO.	Course Content	Lecture
UNIT-01	Basic Concepts: Sensing, Actuation, Networking basics, Communication Protocols, Sensor Networks, Machine-to-Machine Communications, IoT Definition, Characteristics. IoT Functional Blocks, Physical design of IoT, Logical design of IoT, Communication models & APIs.	6
UNIT-02	M2M to IoT: The Vision-Introduction, From M2M to IoT, M2M towards IoT-the global context, a use case example, Differing Characteristics. Definitions, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT.	6
UNIT-03	M2M vs IoT An Architectural Overview: Building architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. Reference Architecture and Reference Model of IoT.	6
UNIT-04	IoT Reference Architecture: Getting Familiar with IoT Architecture, Various architectural views of IoT such as Functional, Information, Operational and Deployment. Constraints affecting design in IoT world- Introduction, Technical design Constraints.	7
CO1: Under sensors and a CO2: Apply o CO3: Evaluat and Devices.	sful completion of the course, the student will be able stand general concepts of Internet of Things (IoT) also recognize vario applications lesign concept to IoT solutions and analyze various M2M and IoT architect e design issues in IoT applications and Create IoT solutions using sensor	tures
Davio Age o Reference Bo	Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis H d Boyle, "From Machine-to-Machine to the Internet of Things: Introductic of Intelligence", 1st Edition, Academic Press,2014. ok:	on to a Nev
Editio 2. Franc	Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on- Appl on, VPT, 2014 2. cis daCosta, "Rethinking the Internet of Things: A Scalable Approach to <i>r</i> thing", 1st Edition, Apress Publications, 2013 3.	-
	Pfister, Getting Started with the Internet of Things, O"Reilly Media, 2011 93-9357-1	, ISBN: 978

Course Name: Engineering Economics and Accountancy

Course Code: HS-321

Contact Hours/Week: 2L

Course Type: Institute Core

Course Credits: 02

Course Objectives

- To impart knowledge about Economics and its applicability to the Engineers
- To introduce the fundamental concepts of economics
- To enable the students to understand the factors that cause the changes in economic conditions of the entrepreneur.

Unit Numbe	Course Content	Contact Hours
UNIT-0		06L
UNIT-0		06L
UNIT-0	Costing and Appraisal:Cost elements, Economic cost, Accounting cost, Standard cost, Actual cost, Overhead cost, Cost control, Criteria of project appraisal, Social cost benefit analysis	03L
UNIT-0 [,]	 Money: Meaning, Functions, Types. Banking: Meaning, Types, Functions, Central Bank: its Functions, concepts CRR, Bank Rate, Repo Rate, Reverse Repo Rate, SLR. 	03L
UNIT-0	5 Depreciation: Meaning of depreciation, causes, object of providing depreciation, factors affecting depreciation, Methods of Depreciation: Straight line method, Diminishing balance method, Annuity method and Sinking Fund method	04L
UNIT-0	5 Financial Accounting: Double entry system (concept only), Rules of Double entry system, Journal(Sub-division of Journal), Ledger, Trial Balance Preparation of final accounts-Trading Account. Profit and Loss account, Balance Sheet.	04L
	Outcomes	
•	uccessful completion of the course, the students will be able to	
CO1:	Familiarize with the concepts of Engineering economics i.e. economic theory, decision ma	king and
CO2:	nanagement. Inderstand and apply the fundamentals of microeconomics in achieving the consumers and ntrepreneurs/manufacturers motive of maximize satisfaction & maximize profit respectively by using by ptimization techniques.	
CO3: CO4:	Learn about the various concepts of cost and their role in determining the producer's behavior. Money, Banking helps in increasing the trade in the economy and telling how it is going to affect and profitability of the entrepreneur	the cost
CO5:	Understand the concept of depreciation, and valuation.	
CO6:	The Trading , Profit and loss account and the Balance sheet that a manufacturer needs to subm government and to attract the investors for making the investment in their company by purchas shares and debentures issued by them.	
Books a	nd References	
1.	Principles of Micro Economics by Mceachern & Kaur, Cengage Publication.	
2.	Managerial Economics: by Craig Peterson & W Cris Lewis, PHI Publication.	
3.	Modern Microeconomics: by A. Koutsoyiannis, Macmillan.	
4.	Managerial Economics Theory and Applications: by D. M. Mithani. Himalaya Publication House.	
5.	Fundamental of Managerial Economics: Mark Hirschey, South Western Educational Publishing.	
6.	Engineering Economics: by Degramo, Prentice Hall.	
7.	Financial Accounting – A Managerial Perspective by R. Narayanaswamy, PHI.	
-		
8.	Introduction to Accounting by J.R. Edwards, Marriot, Sage Publication.	
8. 9.	Introduction to Accounting by J.R. Edwards, Marriot, Sage Publication. Cost Accounting by Jawahar Lal, Tata McGraw Hill.	

Course Code: MA-411 Course Type: Discipline Core		
Contact Hours/\		edits: 03
Course Objectiv	es	
 To study 	the linear and nonlinear ordinary differential equations and their solu	utions in
the form	n of power series.	
To intro	duce the Sturm-Liouville eigenvalue problems and its applications.	
 To unde 	rstand the method of solution for linear and nonlinear partial differen	tial
equation	ns and its applications in engineering.	
Unit Number	Course Content	Lectures
UNIT-01	Ordinary Differential Equations: Review of first order ordinary	8
	differential equations, existence and uniqueness theorems for	
	initial value problems, linear ordinary differential equations of	
	higher order with constant coefficients; Second order linear	
	ordinary differential equations with variable coefficients; series	
	solutions (power series, Frobenius method); Legendre and Bessel	
	functions and their orthogonal properties;	
UNIT-02	Systems of linear first order ordinary differential equations,	8
01111 02	fundamental matrix, fundamental solution, Sturm's oscillation and	U
	separation theorems, Sturm-Liouville eigenvalue problems, Planar	
	autonomous systems of ordinary differential equations: Stability	
	of stationary points for linear systems with constant coefficients,	
	Linearized stability, Lyapunov functions.	
UNIT-03	Partial Differential Equations: Well-posed problems and classical	7
	solutions, Method of characteristics for first order linear and	,
	quasilinear partial differential equations; Higher order partial	
	differential equations in two independent variables: classification	
	and canonical forms, method of separation of variables for	
	Laplace equation in polar coordinates, heat and wave equations in	
	one space variable; Duhamel's principle for inhomogeneous	
	problems	
UNIT-04	Wave equation: Cauchy problem and d'Alembert formula,	5
	domains of dependence and influence, non-homogeneous wave	5
	equation; Heat equation: Cauchy problem; Laplace and Fourier	
	transform methods.	
UNIT-05	Applications: Applications of ordinary differential equations in	8
	Population dynamics, in fluid flow, in economy, in mechanical	C .
	spring system, in finance.	
	Applications of partial differential equations in wave equations,	
	heat transfer, fluid dynamics, reaction-diffusion equations, black-	
	scholes equation, climate modeling etc.	
Course Outcome		
Upon successful	completion of the course, the student will be able to	
CO1: Learn to ar	alyze and solve first-order ordinary differential equations.	
	lve partial differential equations in using various methods.	
	oply partial differential equations in various branches of engineering	
Books and Refe		
1. Differential I	Equations and their Applications by Martin Braun, Springer Verlag Berl	lin
	rential Equations by L C Evans, American Mathematical Society	
	fferential Equations by B Rai and D P Choudhary and H I Freedm	nan, Naros
Publication	. ,	,
	Partial Differential equations by I. N Seneddon, Dover Publications.	

Course Name: Theory of Computation Course Code: MA-412

Course Type: Discipline Core Contact Hours/Week: 03L

Course Credits: 03

Course Objectives

- To introduce students to the mathematical foundations of computation including automata theory; the theory of formal languages and grammars; the notions of algorithm, decidability, complexity, and computability.
- To enhance/develop students' ability to understand and conduct mathematical proofs for computation and algorithms.
- To understand basic properties of Turing machines and computing with Turing machines.

Unit Number	Course Content	Lectures	
UNIT-01	Machines: Basic machine, FSM, Transition graph, Transition	6	
	matrix, Deterministic and non- deterministic FSM'S, Equivalence		
	of DFA and NDFA, Mealy & Moore machines, minimization of		
	finite automata, Two-way finite automata.		
UNIT-02	Grammars: Regular Sets and Regular Grammars: Alphabet, words,	8	
	Operations, Regular sets, Finite automata and regular expression,		
	Pumping lemma and regular sets, Application of pumping lemma,		
	closure properties of regular sets. Formal Grammars & Languages:		
	Basic definitions and examples oF languages, Chomsky hierarchy,		
	Regular grammars, context free & context sensitive grammars,		
	context free languages, non-context free languages, Chomskey		
	normal forms, binary operations on languages.		
UNIT-03	Turing Machines & Pushdown Automata: TM model,	7	
	representation and languages acceptability of TM Design of TM,		
	Universal TM & Other modification, composite & iterated TM,		
	Pushdown automata, Acceptance by PDA.		
UNIT-04	Computability and Undecidability: Basic concepts, primitive &	7	
	partial recursive function, Recursive function, Decidability, Kleen's		
	theorem. Undecidability: Properties of recursive & recursively		
	enumerable languages, Universal Turing machine and undecidable		
	problem, Rice's theorem & some more undecidable problems.		
UNIT-05	Computational Complexity Theory: Definition, linear speed-up,	8	
	tape compression & reduction in number of tapes, Hierarchy		
	Theorem, Relation among complexity measures, Transition		
	lemmas & non deterministic hierarchies, properties of general		
	complexity measures, the gap, speed-up, union theorem,		
	Automatic complexity theorem.		

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1: Analyze and design finite automata, pushdown automata, Turing machines, formal languages, and grammars.

CO2: Demonstrate the understanding of key notions, such as algorithm, computability, decidability, and complexity through problem solving.

CO3: Prove the basic results of the Theory of Computation.

Books and References

- 1. Introduction to Automata theory, Langauges & Computation by J. E. Hopcroft, J.D. Ullman, Narosa Publishers.
- 2. Theory of computer Science by K.L.P. Mishra, Prentice Hall of India.
- 3. Introductory Theory of Computer science by E.V. Krishnamurthy, East West Press.
- 4. Introduction to Languages and the Theory of Computation by J. Martin, McGraw-Hill Education.
- 5. An introduction to formal languages and automata by P. Linz, Narosa.

	e: Discipline Core	
	urs/Week: 03L Course Cre	edits: 03
Course Obje		
	ace the evolution of operating system.	
	earn about the different types of operating system, CPU scheduling.	
	nderstand about the concurrent programming and deadlocks.	
	earn the memory allocation and management.	
	earn about basic and general models of file system, protection and security. Course Content	
		Lecture
UNIT-01	Evolution of operating systems: Evolution of operating systems, Types	7
	of operating systems. The process concept, system programmer's view	
	of processes, operating system's views of processes, operating system	
	services for process management.	C
UNIT-02	CPU Scheduling: Scheduling concepts, scheduling algorithms, algorithm	6
UNIT-03	evaluation, multiple processor scheduling, real time scheduling. Concurrent Programming and Deadlock: Critical regions, Conditional	8
UNIT-03		8
	critical regions, Monitors, Interprocess communication, Messages,	
	Pipes, Semaphores, Modularization, Synchronization, Concurrent	
	languages. Deadlocks: Characterization, Prevention, Avoidance,	
	Detection and Recovery, Combined approach to Deadlock Handling,	
UNIT-04	precedence graphs. Memory Management: Memory Management, Contiguous allocation,	9
0111-04	static-swapping, overlays, dynamic partitioned memory allocation,	9
	demand paging, page replacement, segmentation. Non- contiguous	
	allocation, paging, Hardware support, Virtual Memory.	
UNIT-05	File Systems: A Simple file system, General model of a file system,	6
	Symbolic file system, Logical and Physical file systems, Access methods,	0
	Directory and Disk structure, Allocation methods, Disk scheduling.	
UNIT-06	Protection and Security: Goals and Principles of protection, Domain of	5
	protection, the security problem, programs threats, systems and	5
	network security threats, cryptography as a security tool and user	
	authentication and Computer security.	
Course Out		
	ssful completion of the course, the student will be able to-	
•	e an overview of the evolution of the operating system.	
	be and understand various types of operating system and CPU scheduling.	
	stand the concurrent programming and deadlocks.	
	about memory allocation and management.	
	stand the file system and principles of protections and security threats.	
Books and F		
1. Mai	urice J. Bach, Design of the UNIX Operating System, Prentice Hall, 1986.	
	y Nutt, Kernel Projects for Linux, Addison Wesley, 2001.	
	iam Stallings, Operating Systems: Internals and Design Principles (5th ed.),	
	ntice-Hall of India, 2006.	
	I. Dhamdhere, Operating Systems: A Concept Based Approach (2nd ed.), Ta	ta
	Graw-Hill, 2007.	

Course Code: MA-414 Course Type: Discipline Core	
Contact Hours/Week: 04P	Course Credits: 02
Course Objectives	
• To provide students knowledge of memory	management and deadlock handling
algorithms.	5
• To provide skills for writing programs.	
• To learn different types of operating system	s along with concept of file systems.
List of Experiments	
1. Study of hardware and software requirements of	different operating systems
(UNIX,LINUX,WINDOWS XP, WINDOWS7/8	
2. Execute various UNIX system calls for	
i. Process management	
ii. File management	
iii. Input/output Systems calls	
3. Implement CPU Scheduling Policies:	
i. SJF	
ii. Priority	
iii. FCFS	
iv. Multi-level Queue	
4. Implement file storage allocation technique:	
i. Contiguous(using array)	
ii. Linked –list(using linked-list)	
iii. Indirect allocation (indexing)	
5. Implementation of contiguous allocation techniq	ues:
i.) Worst-Fit ii) Best- Fit iii) First- Fit	
6. Calculation of external and internal fragmentatio	n
i. Free space list of blocks from system	
ii. List process file from the system	
7. Implementation of compaction for the continual	y changing memory layout and calculate total
movement of data	
8. Implementation of resource allocation graph RAG)
9. Implementation of Banker's algorithm	a wait for graph (MEC) for each type of
10. Conversion of resource allocation graph (RAG) t	o wait for graph (WFG) for each type of
method used for storing graph. 11. Implement the solution for Bounded Buffer (pro	ducer-consumer) problem using inter process
communication techniquesSemaphores	bacer-consumer problem using inter process
12. Implement the solutions for Readers-Writers pr	oblem using inter process communication
technique –Semaphore	obient using inter process communication
Note: The concerned Course Coordinator will prepa	re the actual list of experiments/problems at
the start of semester based on above generic list.	the the decidal list of experiments, problems at
Course Outcomes	
Upon successful completion of the course, the stude	ents will be able to
CO1: Make students able to implement CPU schedu	
deadlock avoidance and	
prevention.	
CO2: Implement various algorithms required for ma	nagement, scheduling, allocation and
communication used in operating	
system.	
CO3: Implement page replacement and memory ma	nagement algorithms.

Course Name:		
Course Code: N	1A-451	
Course Type: St	tream Core	
Contact Hours/Week: 02L Course Credits: 02		
Course Objectiv	/es	
 To intro 	duce the idea of artificial neural networks and their architecture	
 To intro 	duce techniques used for training artificial neural networks	
 To enab 	le design of an artificial neural network for classification	
 To enab 	le design and deployment of deep learning models for machine learnin	g problems
Unit Number	Course Content	Lectures
UNIT-01	Artificial Neural Networks- The Neuron-Expressing Linear	8
	Perceptrons as Neurons-Feed-Forward Neural Networks- Linear	
	Neurons and Their Limitations –Sigmoid – Tanh – and ReLU	
	Neurons -Softmax Output Layers – Training Feed-Forward Neural	
	Networks-Gradient Descent-Delta Rule and Learning Rates-	
	Gradient Descent with Sigmoidal Neurons- The Backpropagation	
	Algorithm-Stochastic and Minibatch Gradient Descent – Test Sets –	
	Validation Sets – and Overfitting- Preventing Overfitting in Deep	
	Neural Networks – Implementing Neural Networks in Tensor Flow.	
UNIT-02	Local Minima in the Error Surfaces of Deep Networks- Model	8
	Identifiability- Spurious Local Minima in Deep Networks- Flat	
	Regions in the Error Surface – Momentum-Based Optimization –	
	Learning Rate Adaptation.	
UNIT-03	Convolutional Neural Networks(CNN) – Architecture -Accelerating	9
	Training with Batch Normalization- Building a Convolutional	
	Network using Tensor Flow- Visualizing Learning in Convolutional	
	Networks – Embedding and Representation Learning -Autoencoder	
	Architecture-Implementing an Autoencoder in Tensor Flow –	
	Denoising Sparsity in Autoencoders Models for Sequence Analysis	
	 Recurrent Neural Networks- Vanishing Gradients Long Short- 	
	Term Memory (LSTM) Units- Tensor Flow Primitives for RNN	
	Models-Augmenting Recurrent Networks with Attention.	
Course Outcom	les	

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1: To understand the mathematics behind functioning of artificial neural networks.

CO2: To analyze the given dataset for designing a neural network based solution.

CO3: To carry out design and implementation of deep learning models for signal/image processing applications.

Text Books: -

- 1. Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithm", O'Reilly, 2017.
- 2. Ian Good fellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press, 2016.

Reference Book:

- 1. Aurélien Géron, "Hands-On Machine Learning with Scikit- Learn and Tensor Flow", O'Reilly, 2017.
- 2. Nikhil Ketkar, "Deep Learning with Python: A Hands-on Introduction", Apress, 2017.

Contact Hours/Week: 02L Course Cre		dits: 02	
Course Objectiv	es		
 To introd 	duce the fundamental concept of blockchain technology.		
	the idea of bitcoin basic and Ethereum basic.		
 To learn 	the privacy security issues in blockchain.		
Unit Number	Course Content	Lectures	
UNIT-01	Introduction: Need for Distributed Record Keeping, Modeling	9	
	faults and adversaries, Byzantine Generals problem, Consensus		
	algorithms and their scalability problems, Nakamoto's concept		
	with Blockchain based cryptocurrency, Technologies Borrowed in		
	Blockchain – hash pointers, consensus, byzantine fault-tolerant		
	distributed computing, digital cash.		
UNIT-02	Basic Distributed Computing & Crypto primitives: Atomic	9	
	Broadcast, Consensus, Byzantine Models of fault tolerance, Hash		
	functions, Puzzle friendly Hash, Collision resistant hash, digital		
	signatures, public key crypto, verifiable random functions, Zero-		
	knowledge systems.		
UNIT-03	Bitcoin basics: Bitcoin blockchain, Challenges and solutions, proof	9	
	of work, Proof of stake, alternatives to Bitcoin consensus		
	Ethereum basics: Ethereum and Smart Contracts, The Turing		
	Completeness of Smart Contract Languages and verification		
	challenges, using smart contracts to enforce legal contracts,		
	comparing Bitcoin scripting vs. Ethereum Smart Contracts.		
UNIT-04	Privacy, Security issues in Blockchain: Pseudo-anonymity vs.	9	
	anonymity, Zcash and Zk-SNARKS for anonymity preservation,		
	attacks on Blockchains: Sybil attacks, selfish mining, 51% attacks		
	advent of algorand; Sharding based consensus algorithms to		
	prevent these attacks		
Course Outcom	es		
Upon successful	completion of the course, the student will be able to		
CO1: Understan	d the elementary concept of blockchain technology.		
CO2: Analyses th	he privacy, security issues in blockchain.		
CO3: Implement	t the crypto primitives in blockchain technology.		

Contact Hours/Week: 03L Course Credits		: 03
Course Objecti	ves:	
	Know the need of Cyber Security	
	Understand the Objectives of cyber security	
	Emphasis on cyber security policies Understand the cyber forensics investigation process and laws	
Unit	Course Content	Lectures
Number		
UNIT- 01	Cyber Attacks, Viruses, Worms and other Malware, Intrusion Detection and Prevention Introduction to Cyber Security, Domains of Cyber Security Policies, Cyber Security Evolution- Productivity, Internet, e-commerce, Counter Measures, Challenges.	08
UNIT- 02	Cyber Security Objectives – Cyber Security Management – Metrics, Security Management goals, Counting Vulnerabilities, Security Frame work, Security Policy Objectives, Guidance for decision Makers, Catalogue Approach.	08
UNIT- 03	Cyber Governance Issues – Cyber user Issues –Cyber Conflict Issues – Cyber Infrastructure Issues - Cyber security's role in National Security.	09
UNIT- 04	Cyber Forensics, Computer Forensics and Investigations as a Profession- Understanding Computer Forensics-Preparing for Computer Investigations, Understanding Computer Investigations- Preparing a Computer Investigation-Taking a Systematic Approach- Procedures for Corporate High-Tech Investigations-Understanding Data Recovery Workstations and Software, Data Acquisition- Understanding Storage Formats for Digital Evidence-Determining the Best Acquisition Method-Validating Data Acquisitions-Performing RAID Data Acquisitions.	08
CO1: Understa CO2:Obtain kn CO3: Become f	nes al completion of the course, the student will be able nd the importance of cyber security owledge on objectives of cyber security amiliar with cyber security policies ne cyber forensics investigation process	
Text Books: - 1. Cyber Secu	rity Policy Guidebook, Jennifer L. Bayuk, Jason Healey, Paul Rohmeyer and ey & Sons, Kindle Edition, 2012. References	d Marcus

Edition, 2014.

3. Network Security and Cryptography, Bernard Menezes , Cengage Learning

Course Objectiv	•	
•	Contact Hours/Week: 03L Course Credits:	
 To impar 	ves:	
	t knowledge about the different types of data sets and form the questio	
	the concepts of correlation and regression and ANOVA to the data sets	
	e the students to assimilate data applied to real, science and interesting	
Unit Number	Course Content	Lectures
UNIT- 01	Introduction: Definition of statistics – Scope and limitations of	05
	statistics – Types of data – Nominal, Ordinal, Ratio, Interval scale	00
	data - Primary and Secondary data – Data presentation tools –One	
	dimensional, two dimensional data presentation – line diagram –	
	Box plots – stem and Leaf plots – Scatter plots.	
UNIT- 02	Statistical Measures: Collection and presentation of data -	05
	summarizing data – frequency distribution – Measures of location,	
	Measures of dispersion, and Skewness, Kurtosis and their	
	measures.	
UNIT- 03	Probability: Events - Sample Space - Mathematical and Statistical	05
	definitions of Probability – Axiomatic definition of Probability –	
	Addition and multiplication theorems - Conditional probability –	
	Bayes' Theorem - Simple problems.	
UNIT- 04	Correlation and Regression: Partial and Multiple correlation	06
	coefficients (three variables only) – regression– Curve fitting by least	
	squares – linear and quadratic.	10
UNIT- 05	Hypothesis Testing: Types of errors and power - most powerful	10
	tests, Test for equality of means and variances – t and F test; Chi- square test for goodness of fit and independence of attributes,	
	Analysis of variance with one–way and two–way classifications.	
Course Outcom		
	I completion of the course, the student will be able to:	
•	nd source data for use in evidence-based decision making in statistics.	
	h different types of data and understand how the data plays an importa-	nt role in
statistical decis		
	e which hypothesis testing to use to in their own research.	
CO4. Demonstr	ate the concepts through examples and applications	
Text Books		
	C Gupta and VK Kapoor, Fundamentals of Mathematical Statistic	s, S. Chand
	cations, India, 10 th Edition, 2019.	
	undamentals of Applied Statistics by Gupta .S.C. and Kapoor.V.K, Sultan	Chand.
Reference Bool		
	rwin Miller and Marylees Miller, John E. Freund's Mathematical States	atistics with
	ations, Pearson Education.	unth od:+:
	R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, Fou lan Publishing Company, 1978.	uith edition,

Course Name: Finite Element Method Course Code: MA-303 Course Type: Open Elective

Contact Hours/Week: 03L

Course Credits: 03

Course Objectives:

- Understand the theoretical foundations of the Finite Element Method.
- Develop proficiency in applying the Finite Element Method to solve engineering problems.
- Gain practical experience in mesh generation, analysis, and interpretation of results using FEM software.

Unit	Course Content	Lectures
Number		
UNIT- 01	Introduction: Overview of numerical methods in engineering,	07
	Historical background and development of the Finite Element	
	Method, Advantages of FEM over finite difference method	
UNIT- 02	Finite element formulation: Review of weighted residual	08
	methods, Variational methods and calculus of variations, Weak	
	form of partial differential equations (PDEs), Basic concepts of	
	FEM: discretization, interpolation, and approximation, Shape	
	functions and numerical integration	
UNIT- 03	Mesh Generation: Introduction to mesh generation techniques,	07
	Structured and unstructured meshes, Quality measures and	
	refinement strategies, Linear static analysis using FEM, Application	
	to truss and frame structures, Introduction to dynamic analysis:	
	eigenvalue problems	
UNIT- 04	Heat Transfer Analysis: Steady-state and transient heat conduction,	07
	Convection and radiation boundary conditions, Application of FEM	
	to heat transfer problems and reaction diffusion equations.	
UNIT- 05	Advanced Topics: Basics of fluid mechanics, Navier-Stokes	07
	equations and their weak form, Finite Element Method for fluid flow	
	problems, Nonlinear finite element analysis, Introduction to	
	optimization using FEM, Applications in other engineering	
	disciplines	
Course Outco		
-	sful completion of the course, the student will be able to:	
	strate comprehension of the mathematical principles underlying FEM, incl	luding
	ethods and numerical integration.	
	EM techniques to solve structural, heat transfer, and fluid dynamics proble	
	ng proficiency in mesh generation, element selection, and boundary condi	tions
implementat		
	and interpret FEM results, evaluating their accuracy, validity, and relevan	ice to real-
-	ering applications.	
	erence Books	
	Reddy, An introduction to the Finite Element Method, 3rd edition, McGra	aw-Hill,
200		torucath
	. Zienkiewicz and R. L. Taylor, The Finite Element Method, 7th edition, But	lierworth-
Heir	nemann, 2013.	

- 3. T. J. R. Hughes, The Finite Element Method, Prentice-Hall, 1986.
- 4. Vidar Thomee, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, 2006.

	pe: Discipline Elective	02
Course Ob	ours/Week: 03L Course Credits	5:03
 Tc Tc th 	o introduce the concept of Fourier series, periodic functions, and its propertie o understand various special waveforms such as Euler's formula, Dirichlet's co eorem for the convergence of Fourier series. o learn Fourier transform and properties of Fourier transform.	
Unit No.	o understand Laplace transform and application in various functions. Course Content	Lectures
UNIT-01	Fourier Series: Introduction, Periodic functions: Properties, Even & Odd functions, Special wave forms: square wave, Half wave Rectifier, Sawtoothed wave, Euler's Formula for Fourier Series, Fourier Series for functions of arbitrary period, Dirichlet's conditions, Theorem for the convergence of Fourier Series (statement only). Fourier Series of a function with its periodic extension. Half range Fourier series, Parseval's identity (statement only).	8
UNIT-02	Fourier Transform : Fourier Integral Theorem (statement only), Fourier Transform of a function, Fourier Sine and Cosine Integral Theorem (statement only), Fourier Cosine & Sine Transforms, Fourier Cosine & Sine Transforms of elementary functions.	8
UNIT-03	Application of Fourier Transform: Properties of Fourier Transform: Linearity, Shifting, change of scale, Modulation, Fourier Transform of Derivatives, Convolution Theorem (statement only), Inverse of Fourier Transform. Solution of partial differential equations	4
UNIT-04	Laplace Transform: Introduction of Laplace transform, Functions of Exponential order, The Laplace integral for functions of Exponential order, Convergence of the Laplace integral for the general case, Linear combinations of Laplace transforms, Laplace transform of some typical functions, Elementary properties of F(s), The Shifting theorems, Laplace transform of derivatives and integrals of a function.	8
UNIT-05	Application of Laplace Transform: Initial and final value theorems, Inverse Laplace transform by different methods, convolution theorem, solving Ordinary differential equations by Laplace Transform method.	4
UNIT-06	Z-transforms: Introduction to Z-transform and its elementary properties. Application to difference equations.	4
CO1: Expla CO2: Und conditions CO3: Expla CO4: Unde CO5: De equations Books and 1.	essful completion of the course, the student will be able to- ain Fourier series, periodic functions, and its properties. Terstand and use various special wave forms such as Euler's formulae, s, theorem for the convergence of Fourier series. ain Fourier transform and properties of Fourier transform. Terstand Laplace transform and its application in various function. Secribe Z-transform, elementary properties, and application in solution	of various
2. 3.	A.D Poularikas, The Transforms and Applications Handbook, CRC Press, 1996. M. Ya. Antimirov, A.A. Kolyshkin, R. Valliancourt, Applied Integral Transfo Monograph Series, American Mathematical Society, 2007. Pathak R. S., Integral transforms of generalized functions and their applicatio and Breach Science Publishers, Amsterdam, 1997	orms, CRN

and Breach Science Publishers, Amsterdam, 1997

	MA-242 Discipline Elective	
Contact Hour	•	c· 02
Course Objec		3.05
-	lop proficiency in understanding various types of models including finite,	statistical
	astic, verbal, and mechanical analogies.	statistical,
	er the formulation of models by applying laws and conservation principle	s to
	ete and continuous systems, along with constitutive relations.	5.00
	nce analytical skills by manipulating models into their respective forms, e	valuating
	through case studies, and rendering variables dimensionless for simplific	-
	nt into solutions.	
Unit No.	Course Content	Lectures
UNIT-01	Model and its different types; Finite models; Statistical models;	7
	Stochastic models; Verbal models and mechanical analogies; Fuzzy	
	subsets	
UNIT-02	Formulation of a model; Laws and conservation principles; Discrete	7
	and continuous models; Constitutive relations; Difference and	
	differential equations	
UNIT-03	Manipulation into its most respective form; Evaluation of a model;	7
	Case studies; Rendering variables and parameters dimensionless;	
	Reducing the number of equations and simplifying them; Gaining	
	partial insights into the form of the solution	
UNIT-04	Continuum model; Transport phenomena; Diffusion and air pollution models	5
UNIT-05	Microwave heating; Communication and Information technology;	5
	Applications in finance, healthcare, and environmental science	
UNIT-06	Further case studies; Advanced topics in modeling and simulation;	5
	Optimization techniques in modeling; Sensitivity analysis; Validation	
	and verification of models	1

CO2: Learn to analyze them and numerically simulate the models.

CO3: Learn various real life models like diffusion, transport models.

Books and References

- 1. R. Aris, Mathematical Modelling Techniques, Dover, 1994.
- 2. C. L. Dym and E. S. Ivey, Principles of Mathematical Modelling, Academic Press, 1980.
- 3. M. S. Klamkin, Mathematical Modelling: Classroom Notes in Applied Mathematics, SIAM, 1986.
- 4. A. Friedman and W. Littman, Industrial Mathematics for Undergraduates, SIAM, 1994.

Course Nam	e: Mathematical Methods e: MA-243	
	: Discipline Elective	
	rs/Week: 03L Course Cr	edits: 03
Course Obje	ctives	
	ntroduce the techniques for solving differential equations using power seri	
	tions, special functions, and integral transforms with a focus on recurrence	e relations
	orthogonality properties.	
	nderstand the concept and application of Green's function in solving ordin ial differential equations, along with properties and methods.	lary and
•	evelop proficiency in Fourier analysis, including Fourier series, Fourier cosi	ine and
	series, Fourier integrals, and various transforms for solving differential equ	
	integral equations.	
Unit No.	Course Content	Lectures
UNIT-01	Power series solutions, Bessel functions, Modified Bessel functions,	7
	Legendre polynomial, Laguerre polynomial, Chebyshev polynomial,	
	Hermite polynomials, Recurrence relations, Orthogonality	
UNIT-02	Concept and calculation of Green's function, Properties, Green's	6
	function method for ordinary and partial differential equations	
UNIT-03	Fourier Series, Fourier Cosine series, Fourier Sine series, Fourier	6
	integrals	_
UNIT-04	Fourier transform, Laplace transform, Hankel transform, Finite Hankel	7
	transform, Mellin transform, Solution of differential equations by integral transform methods	
UNIT-05	Construction of kernels of integral transforms on a finite interval	5
	through Sturm-Liouville problem	Ĵ
UNIT-06	Occurrence of integral equations, Regular and singular integral	5
	equations, Volterra integral equations, Fredholm integral equations,	
	Volterra and Fredholm equations with different types of kernels	
Course Outo		
•	sful completion of the course, the student will be able to-	
	ourier series, periodic functions, and its properties.	
	Green's function and its application in solving partial differential equations Fourier transform and properties of Fourier transform.	
Books and R	eferences	
1. 0	G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Unive	ersity Press
	944.	
	Aathematical Methods, MC Potter, Prentice Hall India Learning Private Li	mited; 2n
	dition, 2000.	
	6. F. Roach, Green's Functions, Cambridge University Press, 1995.	06
	A. D. Poularikas, The Transforms and Applications Handbook, CRC Press, 19 . Debnath and D.D. Bhatta, Integral Transforms and Their Applications, Ch	
	fall/CRC, 2011.	
	. W. Brown and R. Churchill, Fourier Series and Boundary Value Problem	ns, McGrav
	fill, 1993.	,
F	III, 1999.	

Course Name	e: Calculus of Variations and Optimal Control	
Course Code	: MA-244	
Course Type:	Discipline Elective	
	rs/Week: 03L Course Credit	s: 03
Course Object		
	erstand variational principles and their applications in solving problems wi	th fixed
	noving boundaries.	
-	re optimal control theory, including controllability, isoperimetric problem	is, and
	ssary conditions for optimal controls.	1
	lop analytical and computational skills for solving variational and optimal	control
Unit No.	ems using methods such as the Rayleigh-Ritz and Galerkin methods. Course Content	Lasturas
		Lectures
UNIT-01	The concept of variation and its properties, Variational problems with	6
	fixed boundaries, The Euler equation, Variational problems in parametric form	
		C
UNIT-02	Variational problems with moving boundaries, Reflection and refraction extremals, Sufficient conditions for an extremum, Canonical	6
	equations and variational principles	
UNIT-03	Complementary variational principles, The Hamilton-Jacobi equation,	6
0111-05	Direct methods for variational problems, Rayleigh-Ritz method,	0
	Galerkin method, shape functions.	
UNIT-04	Introduction to optimal control problems, Controllability and optimal	6
	control, Isoperimetric problems, Bolza problem	
UNIT-05	Optimal time of transit, Rocket propulsion problem, Linear	6
	autonomous time-optimal control problem, Existence theorems for	
	optimal control problems	
UNIT-06	Necessary conditions for Optimal controls, The Pontryagin maximum	6
	principle	
Course Outco	omes	
•	ful completion of the course, the student will be able to-	
	o solve variational problems.	
	o use population methods like Galerkin method.	
	bout real world problems like rocket propulsion problem.	
Books and Re		
	S. Gupta, Calculus of Variation with Applications, Prentice-Hall, India, 199	۶/.
	. M. Ewing, Calculus of Variations with Applications, Dover, 1985.	
	. Sagan, Introduction to Calculus of Variations, Dover, 1967.	agor Vorlag
	L. Troutman, Variational Calculus and Optimal Control, 2nd edition, Sprir 396.	igei veildg,
13		

Contact Hour	Discipline Elective rs/Week: 03L Course Cre	dits: 03
 Course Objectives To teach various number systems, binary codes and their applications To familiarize the students the importance of error detection and error correction codes. To inculcate concepts of K-MAP to simplify a Boolean expression To facilitate students in designing a logic circuit 		
Unit No.	Course Content	Lectures
UNIT-01	Digital System And Binary Numbers: Number System and its arithmetic, Signed binary numbers, Binary codes, Cyclic codes, Hamming Code, the map method up to five variable, Don't care conditions, POS simplification, NAND and NOR implementation, Quine Mc-Clusky method (Tabular method).	7
UNIT-02	Combinational Logic: Combinational Circuits: Analysis Procedure, Design procedure, Binary adder-subtractor, Decimal adder, Binary multiplier, Magnitude comparator, Multiplexers, Demultiplexers, Decoders, Encoders.	7
UNIT-03	Sequential Logic And Its Applications: Storage elements: latches & flip flops, Characteristic Equations of Flip Flops, Flip Flop Conversion, Shift Registers, Ripple Counters, Synchronous Counters, Other Counters: Johnson & Ring Counter.	7
UNIT-04	Synchronous & Asynchronous Sequential Circuits: Analysis of clocked sequential circuits with state machine designing, State reduction and assignments, Design procedure. Analysis procedure of Asynchronous sequential circuits, circuit with latches, design procedure, Reduction of state and flow table, Race-free state assignment, Hazards.	8
UNIT-05	Memory & Programmable Logic Devices: Digital Logic Families: DTL, DCTL, TTL, ECL & CMOS etc., Fan Out, Fan in, Noise Margin; RAM, ROM, PLA, PAL; Circuits of Logic Families, Interfacing of Digital Logic Families, Circuit Implementation using ROM, PLA and PAL; CPLD and FPGA.	7
CO1: Use nu CO2. Identify Boolean form CO3. Minimiz or Tabulation CO4. Analyze Books and Re 1. M. Morris 2. David J. Co	ful completion of the course, the student will be able to- mber systems and complements the importance of canonical forms in the minimization or other optimizat ulas in general and digital circuits. e functions using any type of minimizing algorithms (Boolean algebra, Kar method). the design procedures of Combinational and Sequential circuits.	

Course O ● To int	Hours/Week: 03L Course Credit	
 To inf 	idiectives	
	troduce use of components of a graphics system and become familiar with	th building
	ach of graphics system components and algorithms related with them.	
 To dis 	scuss the application of computer graphics concepts in the development of	[;] compute
game	s, information visualization, and business applications.	
• To co	omprehend and analyze the fundamentals of animation, virtual reality,	underlyin
techn	ologies, and principles.	
Unit	Course Content	Lecture
No.		
UNIT-01	Introduction to Computer Graphics: Overview of Graphics Systems,	5
	Display Devices, Hard copy Devices. Interactive Input Devices, Display	
	Processors, The Graphical Kernel System, Output Primitives,	
	Graphics Hardware: Display technology, random scan, raster scan display	
	processing, input devices for interaction.	6
UNIT-02	Points and Lines: Points & lines, Line drawing algorithms; DDA algorithm,	6
	Bresenham's line algorithm, Circle generation algorithm; Ellipse generating	
	algorithm; scan line polygon, fill algorithm, boundary fill algorithm, flood	
UNIT-03	fill algorithm.	7
UNIT-03	2D Transformations : Basic transformations: translation, rotation, scaling;	/
	Matrix representations & homogeneous coordinates, transformations	
	between coordinate systems; reflection shear; Transformation of points,	
	lines, parallel lines, intersecting lines. Viewing pipeline, Window to viewport coordinate transformation, clipping operations, point clipping,	
	line clipping, clipping circles, polygons & ellipses.	
UNIT-04	3D Transformations : translation, rotation, scaling & other	8
0111-04	transformations. Rotation about an arbitrary axis in space, reflection	0
	through an arbitrary plane; general parallel projection transformation;	
	clipping, viewport clipping, 3D viewing	
	Curves: Curve representation, surfaces, designs, Bezier curves, B-spline	
	curves, end conditions for periodic B-spline curves,	
	Hidden Surfaces: Depth comparison, Z-buffer algorithm, Back face	
	detection, BSP tree	
	method, the Printer's algorithm, scan-line algorithm; Hidden line	
	elimination	
UNIT-05	Visible Lines and Visible Surfaces: Visual Realism, Hidden line and hidden	6
	surface removal: depth buffer algorithm, geometric computations, scan	
	line coherence algorithms, area coherence algorithms, priority algorithm,	
	shading and color models, Modeling methods.	
	Color & shading models: Light & color model; interpolative shading model;	
	Texture;	
UNIT-06	Multimedia: Introduction to Multimedia: Concepts, uses of multimedia,	4
	hypertext, and hypermedia. Image, video, and audio standards.	
Course O		
•	ccessful completion of the course, the student will be able to	
	the basic concepts used in computer graphics.	
	plement various algorithms to scan, transformations, area filling, clipping.	c
	fine the fundamentals of animation, virtual reality, and its related technologies d References	s.
	lural Elements for Computer Graphics by D.F. Rogers, Tata McGraw Hill. Iter Graphics by D.D. Hearn, M.P. Baker, Prentice Hall of India.	
	Iter Graphics by D.D. Hearn, M.P. Baker, Prentice Hail of India. Iter Graphics - A programming approach by S. Harrington, Tata McGraw Hill.	
	matical Elements for Computer Graphics by D.F. Rogers, Tata McGraw Hill.	

Course Code: MA		
Course Type: Discipline Elective		
Contact Hours/W		its: 03
 Course Objective To study processir 	the image fundamentals and mathematical transforms necessary for	image
 To design 	and implement algorithms that perform basic image processing (e.g and image enhancement).	. noise
 To assess 	the performance of image processing algorithms and systems.	
Unit Number	Course Content	Lectures
UNIT-01	Introduction:	5
	Digital image representation, Fundamental steps in image processing, Elements of Digital Image processing systems, Elements of visual perception, Image model, Image sampling and quantization, Relationship between pixels, Imaging geometry.	
UNIT-02	Image Enhancement and Restoration: Image Enhancement in the Spatial Domain: Background, Basic grey level transformation, Histogram processing, Basics of spatial filtering, Smoothing and Sharpening Spatial filters, Frequency domain and Image Enhancement: Introduction to Fourier Transform and the Frequency Domain, Discrete Fourier Transform, Smoothing and Sharpening Frequency-Domain filters.	13
UNIT-03	Image Restoration:Image Degradation/Restoration Process, Types of degradationsin digital images, Noise models.Restoration in presence of noise using filters: Mean filter,Minimum Mean Square Filtering, Geometric mean filter,Geometric transformations.	9
UNIT-04	Edge Detection and Segmentation:First and second order edge detection operators, Detection of discontinuities, Edge linking and boundary detection, Thresholding, Otsu's threshold, Region oriented segmentation, Spatial techniques, and Frequency domain techniques.	9
Course Outcome		
CO1: Learn differ CO2: Learn image	completion of the course, the student will be able to ent techniques employed for the enhancement of images. e restoration in presence of noise using filters. the rapid advances in machine vision.	
Text Books 1. Digital Image P 2. Digital Image P 3. Fundamentals	rocessing by R. Gonzalez and R. E. Wood, Prentice Hall of India. rocessing by W.K. Pratt, McGraw Hill. of Digital Image Processing by A. K. Jain, Prentice Hall of India.	
2. Handbook of N	omputer Vision and Image Procession by A. Low, McGraw Hill. Aathematical Methods in Imaging by Scherzer, Springer. Ing: Analysis and Machine Vision by Milan Sonka, Roger Boyle, and Va	aclav

Course Nam Course Code	e: Software Engineering : MA-354	
	: Discipline Elective	
	•	Credits: 03
Course Obje	-	
• To in	troduce the elementary concepts of Software Engineering and Software Pr	rocess.
● Tou	nderstand the various models of Software development processes.	
• To a	cquire the knowledge of Software Metrics, Requirement Engineering and S	oftware
Plan	ning.	
• To h	ave the basic idea of Software design, Coding and Testing, Software Quality	/
Assu	rance.	
Unit No.	Course Content	Lectures
UNIT-01	Introduction to Software Engineering and Software Process:	9
	Introduction to Software Engineering: Program Vs Software;	
	Characteristics of Software; Evolution of Software Engineering,	
	Software categories, Software Development life cycle, Software	
	Quality. Software Development Processes: Waterfall model,	
	Incremental Models – Iterative Model and RAD Model, Evolutionary	
	Models – Prototype and Spiral Model, Component Based Development,	
	Unified Process, Rapid Software Development.	
UNIT-02	Software Metrics, Requirement Engineering and Software Planning:	7
	Introduction: Software Measurement and Metrics, Software Quality	
	Concepts, Requirement Engineering: Activities and approaches,	
	Software Requirement specification; Software sizing approaches: Size	
	oriented metrics, Function oriented metric, and evaluation techniques.	
	Software Project Planning: Cost Estimation and Evaluation techniques.	
UNIT-03	Software Design: Introduction to Software Design: Objectives and	7
	Principles, Module level concepts Coupling and Cohesion, Design	
	notation and specification; Architectural Design, Component Level	
	Design, Interface Design; Structured Design Methodology, Design	
	Heuristics, Verification, Concepts of Object-Oriented Design.	
UNIT-04	Coding and Testing: Coding: Programming practices and styles. Testing:	7
	Introduction to software testing, Testing Fundamentals, Test cases and	
	test criteria. Black box testing, White box testing: Structural testing,	
	Code Verification, Code Coverage and Cyclomatic Complexity.	
UNIT-05	Software Quality Assurance: Quality Assurance Plans, Project	6
	Monitoring Plans, Risk Management, Software Reliability, Software	
	Maintenance, Software Quality Assurance & International Standards,	
	Clean Room Software Engineering, CASE Tools.	
Course Outc	omes	
Upon succes	sful completion of the course, the student will be able to	
CO1: Unders	tand and analyse the elementary concepts of Software Engineering and So	ftware
Proces		
	e knowledge of various models of Software development processes.	
	he Software Metrics, Requirement Engineering and Software Planning.	
	strate Software design, Coding and Testing, Software Quality Assurance.	
CO5: Incorpo situati	prate the concept of Software Engineering in various practical/engineering/ ons.	scientific
Books and R		
	e Engineering: A Practitioner's Approach by Roger S. Pressman, Mc Graw H grated Approach to Software engineering by Pankaj Jalote, Narosa publishi	
3. Softwar	e Engineering Concepts by R.E. Fairley, MacGraw Hill (1992).	
4. Softwar	e Engineering by Sommerville, Addison Wesley (1999).	

	me: Soft Computing de: MA-341	
	be: Discipline Elective	
	ours/Week: 03L Course Cr	odite: 02
Course Obj		euits. 05
 To To To alg To 	understand the fundamental theory and concept of soft computing method introduce concept of Fuzzy logic, various fuzzy systems and their functions. understand basics of an evolutionary computing paradigm known as geneti porithms. introduce concept of artificial neural networks and its implementation for e plications.	c
Unit No.	Course Content	Lectures
UNIT-01	Introduction to Soft Computing: Concept of computing systems, "Soft" computing versus "Hard" computing, Characteristics of Soft computing, Some applications of Soft computing techniques.	6
UNIT-02	Fuzzy Logic: Introduction to Fuzzy Logic, Classical and Fuzzy Sets: Overview of Classical Sets, Membership Function, Fuzzy rule generation. Operations on Fuzzy Sets: Compliment, Intersections, Unions, Combinations of Operations, Aggregation Operations. Fuzzy Arithmetic, Fuzzy Logic: Classical Logic, Multivalued Logics, Fuzzy Propositions, Fuzzy Qualifiers, Linguistic Hedges, Fuzzy Inference, Defuzzification techniques, Fuzzy logic controller design, some applications of fuzzy logic.	10
UNIT-03	Genetic Algorithms: Concept of "Genetics" and "Evolution" and its applications to probabilistic search techniques, Basic GA framework and different GA architectures, GA operators: Encoding, Crossover, Selection, Mutation etc., Single objective Optimization problem using GA.	10
UNIT-04	Artificial Neural Networks: Overview of biological Neuro-system, Mathematical Models of Neurons, ANN architecture, learning rules, Learning Paradigms-Supervised, Unsupervised and reinforcement Learning, ANN training Algorithms- Training rules, Delta, Back Propagation Algorithm, Multilayer Perceptron Model, Hopfield Networks, Associative Memories, Applications of Artificial Neural Networks.	10
Course Out		
CO1: Unde CO2: Solve CO3: Analy	essful completion of the course, the student will be able to erstand the concepts of fuzzy logic and fuzziness involved in various system. e single objective optimization problems using Genetic algorithm. yze various neural network architectures. soft computing methods to solve various engineering application problems.	
 Neural N Genetic J 	es of Soft Computing by S.N. Sivanandam, S. N. Deepa, John Wiley & Sons. Ietworks and Learning Machines by S. Haykin, Prentice Hall of India. Algorithms in Search, Optimization and Machine Learning by D.E. Goldberg, nputing with MATLAB Programming by NP Padhy and SP Simon, Oxford Univ	
2. Foundat MIT Pre		. Kasabov,
3. Neuro-F	uzzy & Soft Computing by JSR Jang, CT Sun and E Mizutani, Pearson.	

Course Type: Discipline Elective Course Credits: 03 Contact Hours/Week: 03L Course Credits: 03		
	esents the methods for mining frequent patterns, associations, and correl	
	scribes methods for data classification and prediction, and data-clusterin	-
• To lea	arn about various types of data stores such as spatial, textual, multimedia,	streams.
Unit NO.	Course Content	Lectures
UNIT-01	Data Mining: Data-Types of Data, Data Mining Functionalities-	7
	Interestingness Patterns- Classification of Data Mining systems- Data	
	mining Task primitives –Integration of Data mining system with a Data	
	warehouse–Major issues in Data Mining–Data Preprocessing.	
UNIT-02	Association Rule Mining: Mining Frequent Patterns-Associations and	8
	correlations – Mining Methods– Mining Various kinds of Association	
	Rules- Correlation Analysis- Constraint based Association mining.	
	Graph Pattern Mining, SPM.	
UNIT-03	Classification: Classification and Prediction – Basic concepts–Decision	7
	tree induction-Bayesian classification, Rule-based classification, Lazy	
	learner	
UNIT-04	Clustering and Applications: Cluster analysis–Types of Data in Cluster	7
	Analysis–Categorization of Major Clustering Methods– Partitioning	
	Methods, Hierarchical Methods– Density–Based Methods, Grid–	
	Based Methods, Outlier Analysis.	
UNIT-05	Advanced Concepts: Basic concepts in Mining data streams-Mining	7
	Time-series data—Mining sequence patterns in Transactional	
	databases– Mining Object– Spatial– Multimedia–Text and Web data	
	– Spatial Data mining– Multimedia Data mining–Text Mining– Mining	
	the World Wide Web.	
Course Outc	omes	1
Upon succes	sful completion of the course, the student will be able	
CO1: Ability	to understand the types of the data to be mined and present a general c	lassificatio
of tasks and p	primitives to integrate a data mining system.	
	preprocessing methods for any given raw data and Extract interesting pa	tterns fror
large amount		
-	er the role played by data mining in various fields and Evaluate the a	accuracy o
	nd unsupervised models and algorithms.	-
Text Books:		
1. Data Mini	ng – Concepts and Techniques, Jiawei Han & Micheline Kamber, 3rd Editio	n Elsevier.
	ag Introductory and Advanced tonics – Margaret H Dunham, PEA	

2. Data Mining Introductory and Advanced topics – Margaret H Dunham, PEA.

Reference Book:

1. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second Edition), Morgan Kaufmann, 2005.

	Cryptography and Network Security	
Course Code: N		
Course Type: S Contact Hours/V		dite: 02
Course Objectiv		euits. 05
•	es duce the fundamental concepts relevant to Cryptography and Informati	ion
Security		
	erstand the most common type of Crypto systems and various technique	es and
	es related to cryptanalysis.	
	different encryption techniques along with hash functions, MAC, digita	I
	es, and their use in various protocols for network security and system s	
To learn	about how to maintain the Confidentiality, Integrity, and Availability of	a data.
Unit Number	Course Content	Lectures
UNIT-01	Introduction to cryptography, Classical Cryptosystem, Block Cipher,	09
	Data Encryption Standard (DES), Triple DES, Modes of Operation,	
	Stream Cipher, LFSR based Stream Cipher, Mathematical	
	background, Abstract algebra, Number Theory	
UNIT-02	Modular Inverse, Extended Euclid Algorithm, Fermats Little	09
	Theorem, Euler Phi-Function, Eulers theorem, Advanced Encryption	
	Standard (AES), Introduction to Public Key Cryptosystem, Diffie-	
	Hellman Key Exchange, Primarily Testing, ElGamal Cryptosystem,	
	Elliptic Curve over the Reals, Elliptic curve Modulo a Prime.	
UNIT-03	Generalized ElGamal Public Key Cryptosystem, Rabin Cryptosystem,	09
	Message Authentication, Digital Signature, Key Management, Key	
	Exchange, Hash Function, Cryptographic Hash Function, Secure Hash	
	Algorithm (SHA), Digital Signature Standard (DSS).	
UNIT-04	Cryptanalysis, Time-Memory Trade-off Attack, Differential and	09
	Linear Cryptanalysis, Cryptanalysis on Stream Cipher, Modern	
	Stream Ciphers, Shamirs secret sharing and BE, Identity-based	
	Encryption (IBE), Side-channel attack, The Secure Sockets Layer	
	(SSL), Pretty Good Privacy (PGP), Introduction to Quantum	
	Cryptography	
Course Outcom		
•	completion of the course, the student will be able to	
	nd the fundamental concepts relevant to Cryptography and Information	-
	d the most common type of crypto systems and various techniques and	principles
	o cryptanalysis.	aturac
	rent encryption techniques along with hash functions, MAC, digital sign use in various protocols for network security and system security.	atures,
	ut how to maintain the Confidentiality, Integrity, and Availability of data	
	e the concept of cryptography and information security in various	a.
	/engineering/scientific situations.	
Books and Refe		
	hy and Network Security: Principles and Practice by W. Stallings, Pearso	n
	ndia (2017).	
	ding Cryptography: A Textbook for Students and Practitioners by C. Paar	& J. Pelzl
	ience & Business Media (2009).	5, 0, 1 0121)
	hy and Network Security by A. Kahate, Tata McGraw-Hill (2005).	
	hy & Network Security by B. A. Forouzan, Tata Mc Graw Hill (2011).	

Course Name: Compiler Design Course Code: MA-344

Course Type: Discipline Elective

Contact Hours/Week: 03L Course Credits: 03

Course Objectives:

- To teach the students the basic techniques that underlies the practice of Compiler Construction.
- To explore the principles, algorithms, and data structures involved in the design and construction of compilers.
- To introduce the theory and tools that can be standardly employed in order to perform syntax-directed translation of a high-level programming language into an executable code.

couc.		
Unit NO.	Course Content	Lectures
UNIT-01	Introduction: Compilers and Translators, Overview of the Compiling	7
	Process, Syntactic and Lexical Structure of a Language.	
UNIT-02	Lexical Analysis: Regular Expression, Finite Automata, Specification	8
	and Recognition of Tokens, Simple Approaches to Lexical Analyzer	
	Design.	
UNIT-03	Syntactic Analysis: Context free grammar, Syntax and Parse Trees,	7
	Derivation of parse trees, ambiguity, Top-Down and Bottom-Up	
	Parsing, Basic parsing techniques: shift reduce, operator- precedence,	
	predictive parsing, LR Parsers.	
UNIT-04	Intermediate Code: Postfix notation, syntax trees, three address code	7
	(quadruples, triples and indirect triples), Syntax directed translation,	
	Symbol table organization, Run time storage management, Error	
	detection and recovery.	
UNIT-05	Code Generation and Optimization: Basic issues in code generation	7
	and optimization, Elementary idea about loop optimization, DAG,	
	Global data flow analysis, Register utilization, usage count analysis,	
	heuristic ordering algorithm for DAG and optimal ordering algorithm	
	for trees, peephole optimization.	
Course Outco	omes	
Upon success	sful completion of the course, the student will be able	

CO1: Ability to understand direct application to the construction of compilers and optimization.

CO2: Apply various aspects of run-time environment into which the high-level code is translated.

CO3: To provide the experience of the design and construction of a working compiler.

Text Books: -

1. The Theory and Practice of Compiler Writing: -Trembley and Sorenson

2. Principles of Compiler Design: -Aho and Ullman

3. Compilers: Principles, Techniques and Tools -Aho, Ullman and Sethi Reference Book:

1. The Essence of Compilers -Robin Hunter

Course Ty	pe: Discipline Elective	
	lours/Week: 03L Course Cr	edits: 03
Course Ol	-	
	p provide an introduction to Financial Mathematics.	
	b have an idea of various Portfolio Modelling and their Analysis.	
	o introduce Stochastic Process under Finance.	
	o introduce Stochastic Calculus for the problems of Financial Mathematics.	
Unit No.	Course Content	Lectures
UNIT-01	Basics of Financial Markets: Introduction and main theme of mathematical	6
	finance, financial markets and terminology, time value of money, interest	
	rate, discount rate, bonds and bonds pricing, yield curves, duration and	
	convexity, term structure of interest rates, spot and forward rates, net	
	present value, net future value, financial instruments, underlying and	
	derivative securities, types of derivatives, options, forwards, futures,	
	swaps, concept of arbitrage.	
UNIT-02	Portfolio Modelling and Analysis: Portfolios, returns and risk, risk-reward	6
	analysis, asset pricing models, mean variance portfolio optimization,	
	Markowitz model and efficient frontier calculation algorithm, Capital Asset	
	Pricing Models (CAPM).	
UNIT-03	Stochastic Process: Definitions and Simple Stochastics Processes, Brownian	6
	Motion and its Properties, Processes Derived from Brownian Motion,	
	Filtration and Martingale.	
JNIT-04	Stochastics Calculus: Introduction, variation of real-valued function,	6
	variation of Brownian Motion, Stochastic Integral and its Properties, Ito-	
	Doeblin Formula and its variants, Stochastic differential equation.	
UNIT-05	Discrete-Time Finance: Pricing by arbitrage, risk-neutral probability	6
	measures, valuation of contingent claims, and fundamental theorem of	
	asset pricing, Cox-Ross-Rubinstein (CRR) model, pricing and hedging of	
	European and American derivatives as well as fixed-income derivatives in	
	CRR model, general results related to prices of derivatives.	
UNIT-06	Continuous-Time Finance: Black-Scholes-Merton model of stock prices as	6
	geometric Brownian motion, derivation of the Black-Scholes-Merton	
	partial differential equation, the Black-Scholes formula and simple	
	extensions of the model, self-financing strategies and model	
	completeness, risk neutral measures, the fundamental theorems of asset	
	pricing, continuous time optimal stopping and pricing of American options,	
	forwards and futures in Black-Scholes-Merton model.	
Course Ou		
•	cessful completion of the course, the student will be able	
	nderstand the fundamentals of financial markets.	
	pply and analyse various Portfolio Models.	
	familiarity in the knowledge of Markov property and Martingale property its	
•••	ons in the problems involving Mathematical Finance.	~
	hknowledge in the solution of Stochastic differential equations and Ito Calculu	з.
Text Bool		
	enberger Investment Science, Oxford University Press-2009.	
	ndal, Stochastic Differential Equations An Introduction with Application, Sprin	ger-
Verlag-20		
	oss, An Introduction to Mathematical Finance, Cambridge University Press, 19	99.
Reference		
-	s, Futures and Other Derivatives by J. C. Hull, Pearson Education (2003).	
7 N/a+ha	natics for finance. An Introduction by M. Capinski & T. Zastawniak, Springer (2	0031

To underTo introdTo enable	estand the theory of convex set, function and conditions to attain opti rstand the concept of quadratic programming and separate methods. duce the optimality and duality concepts in nonlinear programming. e the students to understand unconstraint and constraint programmi s with solution methods. Course Content Convex Optimization: Convex set, Convex Function, Properties of Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming.	mality.
 To under To under To introd To enable problems Unit Number UNIT- 01 UNIT- 02	 rstand the theory of convex set, function and conditions to attain opti rstand the concept of quadratic programming and separate methods. duce the optimality and duality concepts in nonlinear programming. e the students to understand unconstraint and constraint programmi s with solution methods. Course Content Convex Optimization: Convex set, Convex Function, Properties of Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming. 	ng Lectures 6
 To under To introd To enable problems Unit Number UNIT- 01 UNIT- 02	 An and the concept of quadratic programming and separate methods. Auce the optimality and duality concepts in nonlinear programming. The students to understand unconstraint and constraint programming with solution methods. Course Content Convex Optimization: Convex set, Convex Function, Properties of Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming. 	ng Lectures 6
 To introd To enable problems Unit Number UNIT- 01 UNIT- 02	Auce the optimality and duality concepts in nonlinear programming. e the students to understand unconstraint and constraint programming s with solution methods. Course Content Convex Optimization: Convex set, Convex Function, Properties of Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming.	Lectures 6
To enable problems Unit Number UNIT- 01 UNIT- 02	e the students to understand unconstraint and constraint programmi s with solution methods. Course Content Convex Optimization: Convex set, Convex Function, Properties of Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming.	Lectures 6
problems Unit Number UNIT- 01 UNIT- 02	 with solution methods. Course Content Convex Optimization: Convex set, Convex Function, Properties of Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming. 	Lectures 6
Unit Number UNIT- 01 UNIT- 02	Course ContentConvex Optimization: Convex set, Convex Function, Properties of Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus.Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming.	6
UNIT- 01 UNIT- 02	 Convex Optimization: Convex set, Convex Function, Properties of Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming. 	6
UNIT- 02	Convex Functions, Convex Optimization Problem, Optimality Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming.	
	Condition: Motivation from calculus. Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming.	4
	Quadratic Programming: Wolf's Method for quadratic programming, Beale's method for quadratic programming, Separable Programming.	4
	programming, Beale's method for quadratic programming, Separable Programming.	4
UNIT- 03	Separable Programming.	
UNIT- 03	Separable Programming.	
UNIT- 03		
	Optimality and Duality : Introduction, Feasible directions and	6
	linearizing cone, Basic Constraint qualification, Lagrangian and	-
	Lagrangian Multipliers, Karsh-Kune-Tunker Necessary/Sufficient	
	optimality condition, Duality in nonlinear programming.	
UNIT- 04	Unconstrained Optimization: Introduction, Basic Scheme and	8
	Certain Desirable Properties, Line search method for unimodal	Ū
	Function, Steepest Descent Method, Newton's Methods,	
	Conjugate Gradient Method.	
UNIT- 05	Constrained Optimization Techniques: Introduction,	6
01011-05	Characteristics of a Constrained Problem, DIRECT METHODS:	0
	Random Search Methods, Sequential Linear Programming, Basic	
	Approach in the Methods of Feasible Directions, Sequential	
	Quadratic Programming.	
UNIT- 06	Constrained Optimization Techniques: INDIRECT METHODS-	6
0111-00	Transformation Techniques, Basic Approach of the Penalty	0
	Function Method, Interior Penalty Function Method, Exterior	
	Penalty Function Method	
Course Outcome		
•	completion of the course, the student will be able to	المحمد المحمل
	ling the traits of convex functions and optimization requires employ	ing suitable
decision-making	-	nal colution
•	understanding of quadratic programming problems along with optim	
techniques.	ding the necessary and sufficient entimality conditions, as well a	c duality in
	ding the necessary and sufficient optimality conditions, as well a	s uuanty n
	mming, and their implementation.	
	nowledge and comprehending the algorithms of unconstrained and	constrained
nonlinear progra	mming.	
Text Books	and C. U. Zala An Introduction to Outimization. 4th Ed. 14/ilay 20	112
	nong and S. H. Zak, An Introduction to Optimization, 4th Ed., Wiley, 20	
	S. Bazaraa, Hanif D. Sherali, and C.M. Shetty, Nonlinear Programming:	ineory and
-	ns, Second Edition, John Wiley & Sons, NewYork 1993.	
	Dennis and Robert B. Schnabel, Numerical Methods for Un	constrained
	tion and Nonlinear Equations, SIAM, Philadelphia, 1996	
Reference Books:		
	l and S. J. Wright, Numerical Optimization, Springer, 1999	
	V. Fiacco and Garth P. McCormick, Nonlinear Programming: ained Minimization Techniques, SIAM. Philadelphia, 1990.	Sequentia

	Discipin	he Elective -
	pplied Multivariate Statistical Analysis	
Course Code: M		
Course Type: D Contact Hours/	•	adite: 03
Course Objectiv		
-	part knowledge about the multivariate statistical analysis, both theory	and
metho		
To int	roduce the fundamental concepts relevant to multivariate distribution	s.
• To ena	able the students to understand the classification problem in context o	of
multiv	variate data.	
Unit Number	Course Content	Lectures
UNIT- 01	Introduction: Multivariate descriptive statistics, statistical distance,	5
	mean and covariance matrix, partition of covariance matrix, linear combination of random variables.	
UNIT- 02		8
UNIT- 02	Simple Geometry and random sampling: Geometry of sample, random samples and expected values of sample mean and	0
	covariance matrix, generalized variance, Sample mean, Covariance	
	and Correlation as a matrix operations	
UNIT- 03	Multivariate random variables: Joint multivariate distribution	8
	function, mass and density functions, joint and marginal functions,	-
	Moment generating function for multivariate random variable and	
	its properties	
UNIT- 04	Multivariate Normal Distribution: Multivariate normal distribution	9
	and its properties. Random sampling from multivariate normal	
	distribution. Maximum likelihood estimators of parameters,	
	distribution of sample mean vector	
UNIT- 05	Hotelling T² Distribution: Hotelling T ² statistic, derivation and its	9
	distribution –Uses of T^2 statistic - relation between T^2 and D^2 –	
UNIT- 06	Mahalanobis D ² statistic and its distribution	9
UNIT- 06	Classification problems: Classification into one of two populations and one of several populations – Fisher's Linear discriminant	9
	function.	
	Principle Component Analysis: Population principle components,	
	sample variation, large sample inferences, monitoring quality with	
	principle components	
	Factor Analysis: Mathematical mode, Estimation of Factor	
	Loadings, Concept of factor rotation – Varimax criterion	
Course Outcom		
•	completion of the course, the student will be able to	
	rious multivariate sampling distributions.	
	nd how the distribution arises in multivariate sampling and how	to use it
	nd how to use the classification methods	
	e multivariate nature of the data sets and dimension reduction t	echniques
Text Books		and Contra
1. T.W. And 2003.	derson, An Introduction to Multivariate Statistical Analysis, John Wiley	and sons,
	nson and D.W. Wichern, Applied Multivariate Statistical Analysis, 6th E	dition
	Loll of India 2007	antion,

Prentice Hall of India, 2007.

Reference Books

- 1. J.F. Hair, W.C. Black, B.J. Babin, R.E., Multivariate data analysis, Anderson, Pearson.
- 2. N.C. Giri, Applied Multivariate Statistical Analysis, Academic Press

	Time Series Analysis and Forecasting	
Course Code:		
	Discipline Elective	
Contact Hours/		Credits: 03
Course Objecti		
	oduce the fundamental of time series analysis and forecasting.	a
	n the importance of time series models and their applications in variou	
•	acquainted with the main concepts of Time Series theory and methods	of analysis.
	iliar with models for stationary time series.	1
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Time-series as discrete parameter stochastic process,	4
	auto covariance and auto-correlation functions and their properties.	10
UNIT-02	Exploratory Time Series Analysis: Components of time series,	10
	Measurements of trend, Measurement of seasonal fluctuation,	
	Measurement of cyclic movement, tests for trend and seasonality,	
	exponential and moving average smoothing. Holt and Winters	
	smoothing, forecasting smoothing.	
UNIT-03	Models for Stationary Time Series: (1) moving average (MA), (2)	6
	auto regressive (AR), (3) ARMA and (4) AR integrated MA (ARIMA)	
	models. Box-Jenkins models, choice of AR and MA periods.	
UNIT-04	Modelling Seasonal Time Series: Seasonal ARIMA models,	8
	estimation, and forecasting, Fitting ARIMA models with Box-Jenkins	
	procedure, Identification, Estimation, Verification, Test for white	
	noise, Forecasting with ARMA models.	
UNIT-05	Spectral analysis: Spectral analysis of weakly stationary process,	4
	periodogram and correlogram analyses, computations based on	
	Fourier transform	_
UNIT-06	Multivariate Time Series: Stationary multivariate time series, Cross-	4
	covariance and Cross-Correlation Matrices, Covariance Stationary,	
	Vector white nose process, Moving average representation of a	
	stationary vector process	
Course Outcom		
•	Il completion of the course, the student will be able to	
	nd and analyse the theoretical & practical aspects of time series data.	
	nd the components of time series and measure these components.	
	n appropriate time series model to fit the empirical data and use it for f	orecasting.
	nd the genesis of the multivariate time series analysis.	
Text Books		
	Box, G.M. Jenkins G.C. Reinsel, & G.M. Ljung, Time Series Analysis: For	ecasting and
	l, Palgrave Macmillan, 2015.	
2. Brockw	ell & R.A. Davis. Introduction to Time Series and Forecasting. Springer.	2002.

2. Brockwell & R.A. Davis, Introduction to Time Series and Forecasting, Springer, 2002.

Reference Book

1. Time Series Analysis by J. D. Hamilton, Princeton University Press, 2020.

Course Name: Functional Analysis Course Code: MA-431

Course Type: Discipline Elective

Contact Hours/Week: 03L

Course Credits: 03

Course Objectives

- To understand basics of normed vector spaces and its applications in different fields.
- To give the idea of linear operator in normed vector spaces and the properties.
- To view basics of Hilbert spaces and discuss some theorem and its properties.
- To have the idea of linear operator in Hilbert spaces and the properties.

Unit Number	Course Content	Lectures
UNIT-01	Normed linear spaces, examples and its topological properties, Banach spaces, linear operators.	5
UNIT-02	Spaces of continuous linear operators from a linear space to a Banach space, linear functionals, dual spaces.	5
UNIT-03	Hahn-Banach theorem, Open mapping theorem, Closed graph theorem, Banach- Steinhaus theorem (or the Uniform boundedness principle).	8
UNIT-04	Conjugate spaces, natural embedding of N in N**, conjugate of an operator, simple applications to reflexive separable spaces.	8
UNIT-05	Hilbert Spaces, Schwarz's inequality, orthogonal complement, Bessel's inequality, orthonormal sets, continuous linear functionals on Hilbert spaces.	5
UNIT-06	Riesz- representation theorem, reflexivity of Hilbert Spaces, adjoint of an operator on a Hilbert space, Self-adjoint and normal operators, unitary operators on a Hilbert space.	5

Course Outcomes

Upon successful completion of the course, the student will be able to

- CO1: Explain the fundamental concept of functional analysis and their role in modern mathematics and applied concepts.
- CO2: Demonstrate accurate and efficient use of functional analysis techniques.

CO3: Demonstrate capacity for mathematical reasoning through analysis proving and explain concept from functional analysis.

Books and References

- 5. G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill, 1963.
- 2. S. Ponnusamy, Foundations of Functional Analysis, Narosa Publishing House, New Delhi, 2002.
- 3. E. Kreyszig, Introductory functional analysis with applications, Wiley Classics Library, John Wiley & Sons, Inc., New York.
- 4. B.V. Limaye, Functional Analysis, New Age International Publishers, 3rd Ed., 2014.

	: Discipline Elective rs/Week: 03L Course Credi	ts: 03
Course Obje	ctives	
 To ir 	npart an understanding of special functions in fractional calculus, including	g the
Gam	ma function, Mittag-Leffler function, and Wright function.	
 To ir 	stroduce the concepts and techniques of fractional derivatives and integral	ls, and
	application in solving differential equations.	
•	rovide knowledge in applying fractional calculus to real-world problems in	various
	s such as finance, economics, physics, and engineering.	0
Unit No.	Course Content	Lectures
UNIT-01	Special functions of fractional calculus: Gamma function, Mittag-	5
	Leffler function, Wright function.	
UNIT-02	Fractional derivatives and integrals: Grunwald-Letnikov fractional	6
	derivatives, Riemann-Liouville fractional derivatives, geometric and	
	physical interpretation of fractional integration and differentiation.	
UNIT-03	Laplace, Fourier, and Mellin transforms of fractional derivatives.	5
UNIT-04	Linear fractional differential equations: Equation of a general form,	8
	existence and uniqueness theorem as a method of solution,	
	dependence of a solution on initial conditions, Laplace transform	
	method, standard fractional differential equations, sequential	
	fractional differential equations.	
UNIT-05	Some methods for solving fractional order equations: Mellin	6
	transform, power series, orthogonal polynomials, numerical	
	evaluation of fractional derivatives, approximation of fractional derivatives.	
UNIT-06	Application-oriented case studies, real-world applications of fractional	6
	calculus, and advanced topics in fractional differential equations.	0
Course Outc		
	sful completion of the course, the student will be able to-	
•	various fractional order derivatives of their importance vis-à-vis inte	egral orde
derivatives.	· · · · · · · · · · · · · · · · · · ·	0
CO2: Learn a	bout fractional order differential equations and their solutions.	
CO3: Learn v	arious applications of fractional theory.	
Books and R	eferences	
1. E	asic Theory of Fractional Differential Equations, Y. Zhou, World Scientific, 2	2014.
	ractional Differential Equations, I. Podlubny, Academic Press, 1998.	
	he Fractional Calculus: Theory and Applications of Differentiation and Int	egration to
	rbitrary Order, K.B. Oldham and J. Spanier, Dover Publications, 2006.	
	n Introduction to the Fractional Calculus and Fractional Differential Equ	ations, K.S
Ν	Ailler and B. Ross, Wiley-Interscience, 1993.	

Course Code	e: Topology 9: MA-433	
	: Discipline Elective	
	rs/Week: 03L Course Cred	dits: 03
Course Obje	-	
-	npart understanding of fundamental concepts in topology, including topol	ogical
spac	es, bases, closure, interior, and boundary of sets, as well as dense and now	vhere
dens	se sets.	
• To ir	ntroduce the concepts of continuity, homeomorphism, and various topolog	gical
	perties such as compactness, connectedness, and separation axioms.	
	xplore the applications of topology in various branches of mathematics.	1
Unit No.	Course Content	Lectures
UNIT-01	Topological spaces, Bases and sub-bases for a topology, Limit point,	6
	closure, interior, boundary of a set, dense and nowhere dense sets	
UNIT-02	Continuity, Homeomorphism, Subspace, Product and Quotient	6
	topologies, Compact-open topology	
UNIT-03	Countability axioms, Separation axioms, Regular spaces, Normal	6
	spaces	
UNIT-04	Connectedness; Components, path connectedness, locally connected	6
	spaces, totally disconnected spaces	
UNIT-05	Compactness; Tychonoff's theorem, locally compact spaces, one-point compactification	6
UNIT-06	Urysohn's lemma, Tietze's extension theorem, Urysohn's metrization	6
	theorem, Baire category theorem, Stone-Čech compactification	
Course Outo		
•	sful completion of the course, the student will be able to-	
	he concept related to topology: continuity, compactness, connectedness e	tc.
	various results and theorems of topology.	
CO3: Learn s	ome applications of topology in other branches of mathematics.	
Books and R		
	. R. Munkres: Topology, Pearson India, 2015.	
2. 0	. W. Patty, Foundations of Topology, Second Edition, Jones & Barlett Stude	ent Edition

- 2010.
- 3. G. F. Simmons: Introduction to Topology and Modern Analysis, McGraw-Hill India, 2017

Course Name: Measure Theory Course Code: MA-434 **Course Type:** Discipline Elective Contact Hours/Week: 03L **Course Credits: 03 Course Objectives** To introduce various mathematical concepts, require to understand Measure Theory. • To develop the familiarity with measure on the real line. To acquire the knowledge for integrate the Functions of a Real Variable and their properties. To illustrate some convergence theorems. ٠ **Unit Number Course Content** Lectures UNIT-01 Countable and uncountable sets, cardinality of sets, Semi-algebras, 10 algebras, monotone class, σ -algebras, measure, and outer measures, Caratheödory extension process of extending a measure on a semi-algebra to generated σ - algebra. UNIT-02 Lebesgue outer measure and Lebesgue measure on R, 10 translation invariance of Lebesgue measure, existence of a nonmeasurable set, characterizations of Lebesgue measurable sets. UNIT-03 Measurable functions on a measure space and their properties, 08 Lebesgue measurable functions, simple functions and their integrals on R, Lebesgue integral on R and its properties, Introduction to L^p Spaces. UNIT-04 Bounded convergence theorem, Fatou's lemma, Lebesgue 08 monotone convergence theorem, Lebesgue dominated convergence theorem. **Course Outcomes** Upon successful completion of the course, the student will be able to CO1: Understand the preliminaries that are required for measure theory. CO2: Familiar with measures, Lebesgue integration and convergence. CO3: Describe and apply the notion of measurable functions and sets and use Lebesgue monotone and dominated convergence theorems. CO4: Determine questions related to different kinds of convergence. CO5: Demonstrate the concepts through examples and applications. **Books and References** Real Analysis by H. L. Royden & P. M. Fitzpatrick, Prentice Hall (2010). 1. 2. Measure Theory by P. R. Halmos, Grand Text Mathematics, Springer (1994). 3. Real and Abstract Analysis by E. Hewit & K. Stromberg, Springer (1975). 4. Introduction to Probability and Measure by K. R. Parthasarathy, Hindustan Book Agency, New Delhi (2005). 5. An Introduction to Measure and Integration by I. K. Rana, Narosa House, New Delhi (2005). 6. Measure Theory and Integration, G. Debarra, New Age International Publishers, 2013.

	e: Stream Elective	
	urs/Week: 03L Course Cr	edits: 03
Course Obje		
	provide students with a comprehensive understanding of ordinary different	
•	ations (ODEs), and the ability to perform qualitative analysis of autonomou	
	equip students with the necessary skills to analyze stability and phase portra	
	ems, including the classification of critical points and phase plane analysis f linear systems.	or
	ntroduce students to advanced topics in dynamical systems theory, includir	nσ
	rcation theory, chaos theory, and the modeling of population dynamics and	-
	ctious diseases using ODEs.	4
Unit No.	Course Content	Lecture
UNIT-01	Review of first-order and higher-order linear ordinary differential	7
	equations (ODEs); Qualitative analysis of autonomous systems;	,
	Stability analysis and phase portraits, Classification of critical points;	
	Phase plane analysis for nonlinear systems; Limit cycles and periodic	
	orbits	
UNIT-02	Introduction to bifurcation theory; Analysis of saddle-node,	5
	transcritical, pitchfork, and Hopf bifurcations; Chaos theory:	
	deterministic chaos, strange attractors, and fractals	
UNIT-03	Modeling single species population dynamics using ordinary	6
	differential equations (ODEs); Equilibrium analysis; Stability and	
	bifurcations	
UNIT-04	Modeling infectious diseases using compartmental models (e.g., SIR,	6
	SIS); Epidemic modeling and analysis; Disease control strategies and	
	vaccination models	
UNIT-05	Introduction to spatially structured models; Pattern formation and	6
	Turing instability; Analysis of Turing bifurcations; Application to tumor	
	modeling and pattern formation	
UNIT-06	Stochastic birth and death processes; Branching processes and their	6
	applications in population dynamics and epidemiology; Applications of	
	ODEs and stochastic processes in finance, ecology, and engineering	
Course Out		
•	ssful completion of the course, the student will be able to-	<i>с</i> .
	to solve and analyze first-order and higher-order linear ODEs and produces of automatic structures	performin
	analysis of autonomous systems	includin
	to analyze phase portraits of ODE systems and interpret their behavior imit cycles, periodic orbits	, incluui
	to apply bifurcation theory to analyze and understand the behavior of	dynamic
	luding the identification and analysis of saddle-node, transcritical, pitchforl	•
bifurcations		
Books and I		
	am E. Boyce, Richard C. DiPrima, and Douglas B. Meade, Elementary I	Differentia
	ns, John Wiley & Sons, 2017.	
	as F. Britton, Essential Mathematical Biology, Springer Science & Business N	1 adia 201
2. Nicho	as F. DHULUH, ESSEHUIAHVIAUHEHHAULAI DIVIVEV. SUHHEEF SCIENCE & DUSIDESS IV	leula. ZU I

Course Name: Data Science Course Code: MA-462 Course Type: Stream Elective

Contact Hours/Week: 03L

Course Credits: 03

Course Objectives

- To introduce the concept of Data Science and Big Data Analytics.
- To able to form Lifecycle and methodology for Data Analytics.
- To have the idea of Theory, Methods and Supervised learning for Data Analytics.
- To acquire the knowledge of Unstructured Data Analytics and concept of Endgame.

Unit No.	Course Content	Lecture
UNIT-01	Introduction of Big Data Analytics: Definition of Big Data, Characteristics of Big Data (Volume, Velocity, Variety, Veracity, Value), Importance and impact of Big Data in various industries, Overview of data analytics Types of analytics (Descriptive, Diagnostic, Predictive, Prescriptive), Data exploration and visualization techniques	6
UNIT-02	Basics of Statistics and Mathematics: Descriptive statistics, Inferential statistics, Probability concepts, basics of Linear algebra, Linear Algebra Computation in Large Scale, Introduction to modeling: numerical vs. probabilistic vs. Bayesian, Introduction to Optimization Problems, Batch and stochastic Gradient Descent	6
UNIT-03	Overview of machine learning, Supervised vs. unsupervised learning, Model evaluation and validation, Feature engineering, Ensemble methods, Time series analysis	4
UNIT-04	Big Data Tools and Technologies: Introduction to Hadoop ecosystem (HDFS, MapReduce), Overview of NoSQL databases, Apache Spark and its components, Analysis of real-world big data use cases, Successful implementations and challenges faced, Industry-specific applications, Implementing machine learning models on big data, Exposure to real-world applications and challenges	7
UNIT-05	Regression Analysis: Linear regression, Polynomial regression, Regularization techniques (e.g., Lasso, Ridge), Classification Techniques: Logistic regression, Decision trees and random forests, Support vector machines (SVM), Clustering and Dimensionality Reduction: K-means clustering, Hierarchical clustering, Principal Component Analysis (PCA), Introduction to Deep Learning: Neural networks basics, Deep learning frameworks (e.g., TensorFlow, PyTorch), Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), Natural Language Processing (NLP), Reinforcement Learning	8
UNIT-06	Application of data science techniques to real-world datasets, Industry applications of data science (e.g., finance, healthcare, marketing), Ethical considerations in data science	5

- CO3: Learn the idea of Theory , Methods and Supervised learning for Data Analytics.
- CO4: Implement the idea of Unstructured Data Analytics and concept of Endgame.

Reference books

- 1. Foundations of data science by a/ blum, j. Hopcroft, r. Kannan, Cambridge University Press.
- 2. Introduction to Linear Regression Analysis by Douglas C. Montogomery, E.A. Peck, C.G. Vining, Wiley.
- 3. Statistical Inference by P.J Bickel, K.A. Docksum, Prentice Hall.
- 4. Introduction to Machine Learning: E. Alpaydin, Prentice Hall of India.

Course Name: Natural Language Processing Course Code: MA-463 **Course Type: Stream Elective Course Credits: 03** Contact Hours/Week: 03L **Course Objectives** Identify and discuss the characteristics of different NLP techniques Identify and discuss the characteristics of machine learning techniques used in NLP • Implement a hidden Markov model for part-of-speech tagging Unit No. **Course Content** Lectures UNIT-01 Introduction: Stages of NLP, N-grams, Words: Structure (Spellcheck, morphology using 6 FSTs), Words: Semantics (Lexical Semantics, WordNet and WordNet based Similarity measures, Distributional measures of similarity, Concept mining using Latent Semantic Analysis), Word Sense Disambiguation (supervised, unsupervised and semi supervised approaches) UNIT-02 Words: Part of Speech (POS) tagging using Brill's Tagger and HMMs. Sentences: Basic 6 ideas in compositional semantics, classical parsing (Bottom up, top down, Dynamic Programming, CYK Parser, parsing using probabilistic Context Free Grammars and EM based approaches for learning PCFG parameters. UNIT-04 Word Embeddings (Word2Vec, GloVe, LDA, TF-IDF), Skip-gram model, CBOW, Topic 7 modelling: Latent Dirichlet Allocation, Gibbs sampling for LDA, LDA variations and applications, Semantic Analysis: Introduction, Affective lexicons (Learning and Computation), Language modelling: Basic ideas and smoothing techniques UNIT-05 Information Extraction: Introduction to Named Entity Recognition and Relation 8 Extraction, relation between Information Retrieval and NLP. Summarization (Single document, Multiple documents, query based), Question answering. **Course Outcomes** Upon successful completion of the course, the student will be able CO1: Identify and discuss the characteristics of different NLP techniques CO2: Identify and discuss the characteristics of machine learning techniques used in NLP CO3: Implement a hidden Markov model for part-of-speech tagging CO4: Understand what constitutes a probabilistic language model and understand the difference in assumptions between different types of such models (e.g. bag-of-words, n-gram, HMM, topic model) Text Books: -1. Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Upper Saddle River, NJ: Prentice-Hall, 2nd Edition, 2009/ Latest Edition 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary, Oxford University Press,2008/Latest Edition **Reference Book:**

 Christopher D. Manning and Hinrich Schuetze. Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press.Latest Edition.

2. Allen, J." Natural Language Understanding.". Latest Edition, The Benajmins/Cummings Publishing Company Inc. 1994. ISBN 0-8053-334-0.

Contact Hours/Week: 03L

Course Credits: 03

Course Objectives

- Gain a comprehensive understanding of fractals, including their various types such as Cantor set, Sierpinski triangle.
- Develop proficiency in iterated function systems (IFS) and chaos theory fundamentals, including the dynamics of complex polynomials, chaotic maps, and bifurcation theory.
- Explore applications of fractals and chaos theory across diverse fields such as computer graphics, finance, biology, and geology.

Unit No.	Course Content	Lecture
UNIT-01	Fractals: Cantor set, Sierpinski triangle, Von Koch curve, Hilbert and Peano curves, Weierstrass function. Self-similarity, Scaling, Similarity dimension, Box-counting dimension, Information dimension, Capacity dimension. Fractal dimension estimation methods, Fractal interpolation.	6
UNIT-02	Foundations of iterated function systems (IFS), Classical fractals generated by IFS, Contractions mapping principle, Collage theorem, some applications of Fractals. Iterated function systems in computer graphics, Fractal image compression.	6
UNIT-03	Chaos: One-dimensional maps, periodic points, sensitive dependence on initial conditions, chaos, Sarkoviskii theorem, Logistic map, Henon map. Bifurcation theory, Period doubling route to chaos, Feigenbaum constants.	6
UNIT-04	Dynamics of complex polynomials, Julia sets, Fatou sets, Mandelbrot set, characterization of Julia sets. Iterated function systems in computer graphics, Fractal image compression. Applications in cryptography, Signal processing with fractals.	6
UNIT-05	Dynamics of Newton method. Applications in biology (fractal geometry of natural forms), Finance (fractal analysis of financial time series), Geology (fractal analysis of geological structures), and more.	6
UNIT-06	Further exploration of fractals and chaos theory with advanced topics and case studies. Advanced chaos theory concepts such as strange attractors, chaos control methods, and applications in diverse fields. Advanced fractal geometry topics like multifractals, fractional dimensions, and applications.	6

Reference books

- 1. M. F. Barnsley, Fractals Everywhere, Second Edition, Academic Press, 1995.
- 2. R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Second Edition, Addision-Wesley, 1989.
- 3. K. Falconer, Fractal Geometry Mathematical Foundations and Applications, Third Edition, Wiley, 2013.

Course Credits: 03

Course Name: Statistical Quality Control Course Code: MA-482

Course Type: Discipline Elective

Contact Hours/Week: 03L

Course Objectives

- To introduce the elementary concepts relevant to Statistical Quality Control.
- To learn various available statistical tools of quality control.
- To have the idea of sampling plans for different attributes.
- Construction and analysis of various control charts.

Construction and analysis of various control charts.		
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Concept of Quality – Quality movement in India –	5
	Standardization for Quality – Quality movement – Quality	
	management – Quality circles – Total Quality Management – ISO	
	9001; Need for SQC in industries.	
UNIT-02	Process Control: Chance and assignable causes of variation -	6
	specification and tolerance limits; process capability- Statistical	
	basis for control charts: X-bar, R, and standard deviation charts -	
	their construction and analysis.	
UNIT-03	Control Charts for Attributes – p, np, c, and u charts – their	5
	construction and analysis.	
UNIT-04	Product Control: Acceptance sampling by attributes; Producer's and	8
	Consumer's risk; Notions of AQL, LTPD and AOQL.	
UNIT-05	Modified Control Charts for Mean: CUSUM chart – technique of V-	6
	mask – Weighted Moving average charts – multivariate control	
	charts – Hotelling's T2 control charts.	
UNIT-06	Sampling Plans: OC, AOQ, ASN, ATI curves for Single and double	6
	sampling plans – Concept of Sequential sampling plan for	
	attributes.	

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1: Understand the philosophy and basic concepts of quality improvement.

CO2: Demonstrate the ability to use the methods of statistical process control.

CO3: Demonstrate the ability to design, use, and interpret control charts for variables.

CO4: Perform analysis of process capability and measurement system capability.

CO5: Design, use, and interpret exponentially weighted moving average and moving average control charts.

Text Books

1. D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons.

2. Fundamentals of Applied Statistics by S.C. Gupta and V.K.Kapoor, Sultan Chand and Sons. Reference Books

- 1. Mittage, H.J and Rinne, H, Statistical Methods of Quality Assurance, Chapmann Hall, London, UK, 1993.
- 2. Edward G. Schilling, Dean V. Neubauer, Acceptance Sampling in Quality Control, Second Edition, Taylor & Francis, 2009.

Course Name: Cloud Computing Course Code: MA-483

Course Type: Stream Elective

Course Credits: 03

Contact Hours/Week: 03	
Course Objectives:	
Classify different computing paradigms	

- Classify different computing paradigms
- Explain the available services and deployment models used in cloud computing • architecture.
- Describe the virtualization, migration model and related operations.
- Build the capacity planning to meet SLA and legal issues.
- Access the ricks and cloud security issues

Asses Unit NO.	s the risks and cloud security issues. Course Content	Lectures
UNIT-01	Evolution of Cloud Computing: Computing paradigms -Distributed	7
0111-01	Computing, Grid Computing, Cluster Computing, Utility Computing;	/
	Overview of Cloud Computing, Cluster Computing, Otinty Computing, Overview of Cloud Computing -Introduction to Cloud Computing,	
	properties, characteristics and disadvantages.	0
UNIT-02	Cloud Computing Architecture: Architecture- Cloud Computing Stack,	8
	Microsoft Azure Platform, Amazon EC2 Platform, Architecture for	
	Elasticity, Best Practices in Architecture; Service Models –SaaS, PaaS,	
	laaS, general overview of everything as a service; Deployment Models	
	- Public, Private, Hybrid and Community.	
UNIT-03	Virtualization: Virtual Machines, Role of Virtualization, Types of	7
	Virtualization, VM primitive Operations, Virtualization Middleware,	
	Virtualization of Clusters and Data centers, Virtual machines	
	provisioning, VM Migration services, Management of Virtual	
	machines for Cloud Infrastructures, OS-OpenStack and its	
	components.	
UNIT-04	Service Management in Cloud Computing: Scheduling Techniques for	7
	Advance Reservation of Capacity, Service Level Agreement (SLA),	
	Capacity Management to Meet SLA Commitments, Cloud Economics,	
	Data Management, MapReduce- Model, Fault Tolerance, Efficiency,	
	Applications.	
UNIT-05	Change Management and Cloud Security: Organizational Readiness,	7
	Change management in the Cloud age, Infrastructure Security, data	
	security and Storage, Identity and Access Management, Access	
	Control and Trust, reputation and Risk, Introduction to Cloud	
	Simulator.	
Course Outo		

Course Outcomes

Upon successful completion of the course, the student will be able

CO1: Identify current computing paradigm of the real-time applications.

CO2: Manage and schedule the virtually created computational resources in cloud environment.

CO3: Assess the legal issues and security risks related cloud resources and use cloud computing platforms for their startups at low cost.

Text Books: -

- 1. Cloud Computing: Principles and Paradigms by Rajkumar.
- 2. Cloud Application Architectures: Building Applications and Infrastructure in the Cloud. George Reese, O'RedI SPD, rp2OII.
- 3. Cloud Computing, Soumya Kanti Gosh, NPTEL.2017.

Reference Book:

- 1. Enterprise Cloud Computing Gautam Shroif, Cambridge University Press. 2010.
- 2. Cloud Computing: Implementation, Management and Security, John W. Rittinouse, James F Ransome. CRC Press, rp2012.

	rs/Week: 03L Course Cre	edits: 03
	tives: rstand the fundamental concepts and properties of groups, including subg al subgroups, quotient groups, and homomorphisms.	roups,
 Gain vario 	proficiency in applying group theory concepts to analyze and solve probler us mathematical contexts, such as cyclic groups, permutation groups, and	
ideals	rems. lop a solid foundation in ring theory, including rings, ideals, prime and max s, quotient rings, and properties of special types of rings like unique factori ains and polynomial rings.	
Unit NO.	Course Content	Lectures
UNIT-01	Number Theory: Congruences, theorems of Fermat, Euler & Wilson, linear congruences and Chinese remainder theorem, Diophantine equations.	7
UNIT-02	Groups, subgroups, normal subgroups, quotient groups, homomorphisms, automorphisms; cyclic groups, permutation groups, Sylow's theorems and their applications;	7
UNIT-03	Ring Theory: Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domains, Principle ideal domains, Euclidean domains, polynomial rings, Fields: Fields, finite fields,	7
UNIT-04	Vector Space: Fields, Vector Spaces over R and C, subspaces, linear independence, basis, and dimension of a vector space, ordered basis and co-ordinates. Application to difference equations and Markov chains.	7
UNIT-05	Linear Transformation: Linear transformations, Rank and Nullity of linear transformation, Algebra of linear transformation, Isomorphism, Invertible linear transformations, Dual and double dual of a vector space and transpose of a linear transformation, Matrix representation of Linear Transformation, Eigen values and Diagonalization	8
Course Outc	omes	L
CO1: Demor	sful completion of the course, the student will be able nstrate a comprehensive understanding of group theory concepts, including nd analyze different types of groups, subgroups, and homomorphisms in ma	-
Sylow's theo CO3: Analyze and applicat	roup theory techniques to solve problems related to permutations, cyclic g rems, demonstrating proficiency in theorem applications and proofs. e and solve problems in ring theory, including properties of rings, ideals, quo tions to factorization domains and polynomial rings, showcasing the algebraic structures effectively.	otient ring
	$a_{\rm B}$ contain sinulations checking.	

Course Type: Minor in Mathematics				
Contact Hours		dits: 03		
Course Objecti				
	art knowledge about real number system and its various properties.			
	erstand the sequence and series of real valued functions.			
•	vide an introduction to the theories of functions of a complex variable			
theore	lar, the notion of analyticity, completeness, compactness with some fines	undamentai		
	vide knowledge of singularities, residues and various series expansions	of complex		
	functions.	or complex		
Unit No.	Course Content	Lectures		
UNIT-01	Real Number System: Logic, Sets, functions, real number system	5		
0	and its completeness property, order property, Nested Intervals	0		
	Property.			
UNIT-02	Sequences and Series: Sequence, convergence, monotone	5		
	sequence, Subsequences, Bolzano-Weiestrass theorem, Cauchy			
	criterion, Convergence of series, Comparison test, Ratio test			
UNIT-03	Limit and Continuity: Cluster point, Limit of a function, Limit	5		
	theorem, Sequential criterion, continuity, composition of			
	continuous maps, uniform continuity, continuity on intervals,			
	minimum maximum theorem, uniform continuity,			
UNIT-05	Differentiability: The derivative, Caratheodory's Theorem, Chain	5		
	rule, Mean value theorem, L'Hospital rule,			
UNIT-06	Riemann Integration: Tagged partition, Riemann sum, Cauchy	6		
	Criterion, Squeeze Theorem, Fundamental Theorems of			
	Calculus.			
UNIT-07	Complex valued functions: Functions of a complex variable:	10		
	continuity, differentiability, analytic functions, harmonic			
	functions; Complex integration: Cauchy's integral theorem and			
	formula; Morera's theorem; zeros and singularities; Laurent's			
	series, Residue theorem, Rouche's theorem, Argument principle			
Course Outcon				
•	ul completion of the course, the student will be able to :-			
	out some of the classes and properties of Riemann integrable function	IS.		
	out analytic functions and their importance. out Cauchy criterion for uniform convergence and Weierstrass M-tes	t for uniform		
convergence.	out caucity chileholi for uniform convergence and weierstrass writes			
•	bout Power series of complex valued functions and formulas to f	ind radius o		
convergence f	•			
Books and Ref				
	to Real Analysis , R.G. Bartle & D.R. Sherbert, Wiley.			
	alysis, E.M. Stein & R. Shakarchi, Princeton University Press.			
•	alysis for Mathematics and Engineering by J.H. Mathews and R.W. Ho	well, Naros		
Publishing Hou				

Course Code: MA-410 Course Type: Minor in Mathematics				
Contact Hours/Week: 03L Course Cr				
Course Objectiv				
 To study 	y the linear and nonlinear ordinary differential equations and their solu	utions in		
	n of power series.			
 To intro 	duce the Sturm-Liouville eigenvalue problems and its applications.			
 To under 	erstand the method of solution for linear and nonlinear partial differen	tial		
equatio	ns and its applications in engineering.			
Unit Number	Course Content	Lectures		
JNIT-01	Ordinary Differential Equations: Review of first order ordinary	8		
	differential equations, existence and uniqueness theorems for			
	initial value problems, linear ordinary differential equations of			
	higher order with constant coefficients; Second order linear			
	ordinary differential equations with variable coefficients; series			
	solutions (power series, Frobenius method); Legendre and Bessel			
	functions and their orthogonal properties;			
JNIT-02	Systems of linear first order ordinary differential equations,	8		
	fundamental matrix, fundamental solution, Sturm-Liouville			
	eigenvalue problems, Laplace transform methods.			
JNIT-03	Partial Differential Equations: Well-posed problems and classical	7		
	solutions, Method of characteristics for first order linear and			
	quasilinear partial differential equations; Higher order partial			
	differential equations in two independent variables: classification			
	and canonical forms, method of separation of variables for			
	Laplace equation in polar coordinates, heat and wave equations in			
	one space variable			
JNIT-04	Wave equation: Cauchy problem and d'Alembert formula,	5		
	domains of dependence and influence, non-homogeneous wave			
	equation; Heat equation: Cauchy problem; Fourier transform			
	methods.			
JNIT-05	Applications: Applications of ordinary differential equations in	8		
	Population dynamics, in fluid flow, in economy, in mechanical			
	spring system, in finance.			
	Applications of partial differential equations in wave equations,			
	heat transfer, fluid dynamics, reaction-diffusion equations, black-			
	scholes equation, climate modeling etc.			
Course Outcom				
•	l completion of the course, the student will be able to			
	nalyze and solve first-order ordinary differential equations.			
	blve partial differential equations in using various methods.			
	pply partial differential equations in various branches of engineering			
Books and Refe		lin		
	Equations and their Applications by Martin Braun, Springer Verlag Berl	1111		
	rential Equations by L C Evans, American Mathematical Society	an Nara		
 Ordinary Di Publication 	ifferential Equations by B Rai and D P Choudhary and H I Freedm	ian, ivaros		
	Dartial Differential equations by L.N. Consider Dever Dublications			
	Partial Differential equations by I. N Seneddon, Dover Publications.			

Ordinary And Partial Differential Equations, M D Raisinghaniya, S Chand, 2020.

Contact Hours/Week: 03L Course Cred				
Course Objec		robobility		
	p basic probability concepts such as probability rules, axioms, conditional p ndependence.	brobability,		
	point estimation methods and understand the properties of estimators.			
 Learn point estimation methods and understand the properties of estimators. Understand hypothesis testing concepts and apply them to analyze data. 				
Unit NO.	Course Content	Lectures		
UNIT-01	Probability and Probability Distributions: Basic concepts of probability, Probability rules and axioms, Conditional probability and independence, Discrete probability distributions (e.g., binomial, Poisson), Continuous probability distributions (e.g., normal, exponential), Properties and characteristics of distributions, Central Limit Theorem	8		
UNIT-02	 Estimation: Point estimation, methods and properties, Interval estimation: confidence intervals, Properties of estimators, Method of Moments and MLE. Hypothesis Testing: Basic concepts of hypothesis testing, One-sample and two-sample tests, Type I and Type II errors, Power of a test, Neyman-Pearson Lemma 	8		
UNIT-03	Correlation and Regression Analysis : Correlation analysis: Pearson correlation coefficient, Spearman's rank correlation, Simple linear regression, Multiple linear regression, Model fitting and interpretation, Residual analysis	8		
UNIT-04	Sampling Theory and Applications: Simple random sampling,Stratified sampling, Cluster sampling, Sampling distributionsMargin of error and confidence intervals in samplingApplication of statistical methods to real-world data setsDiscussion of ethical considerations in statistical analysis	7		
UNIT-05	Applications of statistical tools in engineering: Quality Control, Reliability Analysis, Process Optimization, Data Analysis, Risk Analysis	5		
•	comes sful completion of the course, the student will be able nstrate comprehension of basic probability concepts and their applications			
CO2: Exhibit	proficiency in point estimation methods and interpret the properties of es nypothesis testing procedures to analyze data and make statistical inference	stimators.		
Text and Ref	ference Book:			

Publishing Company, 1978.

4. Rohatgi, Saleh, An Introduction to Probability and Statistics, Wiley, 2008.