Master of Technology

In

Civil Engineering (Environment)

Course Structure & Syllabus

Department of Civil Engineering
National Institute of Technology Hamirpur
Hamirpur (HP) – 177005, India
Course Structure of M.Tech. Civil Engineering (Environment)

SEMESTER-I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Name</th>
<th>Teaching Schedule</th>
<th>Hours/Week</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CE-691</td>
<td>Environmental Chemistry</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CE-692</td>
<td>Air Pollution and Control</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>CE-693</td>
<td>Advanced Water Treatment</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>CE-7MN</td>
<td>Programme Elective-I</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>CE-7MN</td>
<td>Programme Elective-II</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>CE-694</td>
<td>Environmental Engg. Lab-I</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>20 0 4</td>
<td>24</td>
<td>22</td>
</tr>
</tbody>
</table>

Programme Elective-I & II: List of Programme Electives is given in the Annexure.

SEMESTER-II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Name</th>
<th>Teaching Schedule</th>
<th>Hours/Week</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CE-601</td>
<td>Solid & Hazardous Waste Management</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CE-602</td>
<td>Advanced Wastewater Treatment</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>CE-603</td>
<td>Microbiology and Ecology</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>CE-7MN</td>
<td>Programme Elective-III</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>CE-7MN</td>
<td>Programme Elective-IV</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>CE-604</td>
<td>Environmental Engg. Lab - II</td>
<td>0 0 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>20 0 4</td>
<td>24</td>
<td>22</td>
</tr>
</tbody>
</table>

Programme Elective-III & IV: List of Programme Electives is given in the Annexure.

SEMESTER-III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Hours/Week</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

SEMESTER-IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Hours/Week</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Total Credit of the Programme = 84
Annexure

List of Programme Electives

Programme Elective-I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-791</td>
<td>Industrial Waste Management</td>
</tr>
<tr>
<td>CE-713</td>
<td>Computation Techniques in Civil Engineering</td>
</tr>
<tr>
<td>CE-715</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>CE-732</td>
<td>Geo-environmental Engineering</td>
</tr>
</tbody>
</table>

Programme Elective-II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-792</td>
<td>Introduction to Climate Change</td>
</tr>
<tr>
<td>CE-793</td>
<td>Environmental Management</td>
</tr>
<tr>
<td>CE-718</td>
<td>GIS and Its Application in Civil Engineering</td>
</tr>
<tr>
<td>CE-736</td>
<td>Hazardous Waste and Remediation of Contaminated Sites</td>
</tr>
</tbody>
</table>

Programme Elective-III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-701</td>
<td>Bioremediation-Principles and Applications</td>
</tr>
<tr>
<td>CE-702</td>
<td>Design of Treatment Plants and Equipment</td>
</tr>
<tr>
<td>CE-722</td>
<td>Environmental Hydrology</td>
</tr>
</tbody>
</table>

Programme Elective-IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-703</td>
<td>Environmental Toxicology and Health</td>
</tr>
<tr>
<td>CE-723</td>
<td>Disaster Management</td>
</tr>
<tr>
<td>CE-726</td>
<td>River Engineering</td>
</tr>
<tr>
<td>CE-786</td>
<td>Transportation Environment Interaction</td>
</tr>
<tr>
<td>Course Name</td>
<td>Environmental Chemistry</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Course Code</td>
<td>CE-691</td>
</tr>
<tr>
<td>Course Type</td>
<td>Core</td>
</tr>
<tr>
<td>Contact Hours/Week:</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits:</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives
- To equip students with the knowledge of the chemical properties of elements and compounds.
- To equip students about the chemical reactions essential for the emergence and existence of the cycling and accumulation of pollutants in the environment.

Course Content

Course Outcomes
- Upon successful completion of the course, the students will be able to
 - CO1: Synthesize and apply concepts from multiple sub-disciplines in environmental chemistry and toxicology.
 - CO2: Use technical and analytical skills to quantify the level and effects of xenobiotic in environmental compartments.

Books and References
Course Name: Air Pollution and Control
Course Code: CE-692
Course Type: Core
Contact Hours/Week: 4L
Course Credits: 04

Course Objectives
- To make the students aware of history of air pollution; definition of air pollution and various types of sources and classification of air pollutants.
- To make the student aware of techniques and instrumentation of ambient air monitoring, establishment of ambient air monitoring stations; stack monitoring and experimental analysis of air gaseous and particulate air pollutants; standards and limits.

Course Content
- Air Quality and Standards, Important air pollutants, their sources, characteristics and effects. Sampling and Analysis: Ambient air sampling, stack sampling, Air quality standards.
- Air Pollution Meteorology and Dispersion Models, Atmospheric motion, Lapse rate, atmospheric stability, inversion, atmospheric dispersion, maximum mixing depth, Diffusion models, plume rise.
- Control of Particulates, Characteristics of particulates. Filters, gravitational, centrifugal-multiple type cyclones, prediction of collection efficiency, pressure drop, wet collectors, Electrostatic Precipitation theory-particle charging-particle collection-ESP design procedure.
- Control of Gaseous Pollutants.
- Adsorption, absorption. Emission control in coal-fired power plants and other important industries. Condensation and incineration.
- Automobile Pollution, Legislation for motor vehicle emission control, control of automobile pollution, internal combustion engines, modification of IC engines to reduce emission, air fuel ratio, catalytic converters.
- Odour pollution and control, Indoor air pollution, Noise pollution and control.

Course Outcomes
Upon successful completion of the course, the students will be able to:
- CO1: Grasp the fundamentals of air pollution and its associated environmental impacts.
- CO2: Earn to describe the key concepts of air quality management.

Books and References
Course Name: Advanced Water Treatment

Course Code: CE-693

Course Type: Core

| Contact Hours/Week: | 4L | Course Credits: | 04 |

Course Objectives

- To provide an overview of both the theoretical and practical aspects of conventional and advanced water technology for surface water treatment.
- Select an appropriate treatment process for a specific application, and be able to identify appropriate pre-treatment and post treatment schemes, and cleaning protocols for these processes.

Course Content

- Types of Sedimentation and coagulation, settling tests, scale up, Batch flow and continuous flow operations. Coagulation, mechanisms of coagulation, effect of turbidity and alkalinity, chemistry of coagulants.
- Flow through beds of solids: Slow sand filters, rapid sand filters, ion exchange units, adsorption towers, contacting towers, flow through expanded beds, flow through porous plates and membranes.
- Gas transfer and Disinfection: Mechanism of transfer, film coefficients and equilibrium relationship, gas disperses, packed columns, tray columns, spray units. Disinfection, mechanism, different agents.
- Advanced treatment operations: Adsorption, isotherms, reverses osmosis, electro-dialysis, ultrafiltration, etc. Applications of Unit Operations in Water Treatment and Design of Physical Facilities.

Course Outcomes

Upon successful completion of the course, the students will be able to:

- CO1: Depth knowledge of physical chemical unit processes.
- CO2: Candidate should be able to use skills to perform research at a higher level.

Books and References

3. Water and Wastewater Treatment by Schroeder E D., McGraw-Hill.
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Environmental Engineering Laboratory-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-694</td>
</tr>
</tbody>
</table>

Contact Hours/Week: 4P
Course Credits: 02

Course Objectives
- To introduce students to how the common environmental experiments relating to water and wastewater quality are performed.
- This course will help students know which tests are appropriate for given environmental problems, statistically interpret laboratorial results and write technical reports, and apply the laboratorial results to problem identification, quantification, and basic environmental design and technical solutions.

List of Experiments
1. To determine Turbidity in water/wastewater sample.
2. To determine Alkalinity in water/wastewater sample.
3. To determine Hardness in water/wastewater sample.
4. To determine Chlorides, Sulphate and nitrates in water/wastewater sample.
5. To determine Dissolved Oxygen (DO) in water/wastewater sample.
6. To determine Biochemical Oxygen Demand (BOD) in water/wastewater sample.
7. To determine Chemical Oxygen Demand (COD) in water/wastewater sample.
8. Microbiological quality of water – MPN, Plate count and membrane filtration techniques
10. Microscopy, staining techniques

Course Outcomes

Upon successful completion of the course, the students will be able to:

CO1: Perform common environmental experiments relating to water and wastewater quality, and know which tests are appropriate for given environmental problems.

CO2: Statistically analyse and interpret laboratorial results.

CO3: Apply the laboratorial results to problem identification, quantification, and basic environmental design and technical solutions.

CO4: Understand and use the water and wastewater sampling procedures and sample preservations.
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Solid and Hazardous Waste Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-601</td>
</tr>
<tr>
<td>Course Type</td>
<td>Core</td>
</tr>
<tr>
<td>Contact Hours/Week</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives
- Understanding of problems of municipal waste, biomedical waste, hazardous waste, e-waste, industrial waste etc.
- Knowledge of legal, institutional and financial aspects of management of solid wastes.
- Become aware of Environment and health impacts solid waste mismanagement.
- Understand engineering, financial and technical options for waste management.

Course Content

- Solid waste sources - nature and characteristics - Quantities and Qualities - generation rates – Potential of disease - nuisance and other problems. Collection and Storage

Course Outcomes
- CO1: Do sampling and characterization of solid waste;
- CO2: Analysis of hazardous waste constituents including QA/QC issues;
- CO3: Understand health and environmental issues related to solid waste management;
- CO4: Apply steps in solid waste management-waste reduction at source, collection techniques, materials and resource recovery/recycling, transport, optimization of solid waste transport, treatment and disposal techniques.

Books and References
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Advanced Wastewater Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-602</td>
</tr>
<tr>
<td>Course Type</td>
<td>Core</td>
</tr>
<tr>
<td>Contact Hours/Week</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives

- To apply knowledge of mathematics, physics, chemistry, and microbiology to solve and analyse engineering problems related to water and wastewater collection, transport, quality and treatment.
- To use the fundamental principles of mass balance, chemical kinetics and equilibrium to design water or wastewater reactors to achieve a desirable treatment goal.

Course Content

Kinetics of Biological Growth, Nutrition and growth conditions, Effect of environmental conditions, bacterial growth in terms of numbers and mass, growth curve, interpretation of curve, substrate limited growth, Monod's expression, substrate utilization and cell growth, effect of endogenous metabolism, inhibition, effect of temperature, application of growth and substrate removal kinetics to biological treatment.

Reactors and Reactor analysis, Types of reactors and their analysis.

Biological Processes, Fundamentals and design concepts of aerobic treatment processes. Anaerobic treatment processes, Nutrient removal and Pond treatment processes: Biological processes for nitrogen and phosphorus removal. Different pond treatment systems

Biological processes for sludge processing.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Select or construct appropriate treatment schemes to remove certain pollutants present in water or wastewater.
- CO2: Design a water or wastewater treatment component.
- CO3: Balance chemical reactions and use balanced reactions to determine the distribution of species at equilibrium.
- CO4: Learn how to characterize wastewater, and the best available technology (BAT) for physical, chemical and microbiological treatment of wastewater.

Books and References

3. Water and Wastewater Treatment by Schroeder E D., McGraw-Hill.
Course Name : Microbiology and Ecology
Course Code : CE-603
Course Type : Core

Contact Hours/Week: 4L

Course Credits: 04

Course Objectives
- Understand the role of micro-organisms as agents of environmental change.
- Recognize micro-organisms as indicators of alteration of an ecosystem.
- Understand microbial processes aimed to solve environmental problems.

Course Content
Distribution of microorganisms, indicator organisms, coliforms - fecal coliforms - E.coli, Streplococcus fecal is differentiation of coliforms - significance - MPN index, M.F. technique, standards. Microbiology of wastewater treatment processes such as activated sludge process, trickling filter, anaerobic processes.
Introduction to Microbiology of Soil and Air and Industrial Microbiology, Microbiology of bioremediation and solid waste treatment. Bio-sphere, earth energy budget, Ecosystem, Uniformitarianism, the ecology of population, Ecosystem and communities: Physical and biological properties.

Course Outcomes
Upon successful completion of the course, the students will be able to:
CO1: Apply knowledge of biology on certain species of micro-organisms in order to use them as bio-indicators.
CO2: Apply the metabolic processes of micro-organisms to industrial processes related to environment.
CO3: Develop analysis and synthesis skills.

Books and References
1. Environmental Microbiology by Maier R M, Pepper I L and Gerba C P., Elsevier- AP.
Course Name : Environmental Engineering Laboratory-II
Course Code : CE-604

Contact Hours/Week: 4P
Course Credits: 2

Course Objectives
- To introduce students to how the common environmental experiments relating to water and wastewater quality are performed.
- This course will help students know which tests are appropriate for given environmental problems, statistically interpret laboratorial results and write technical reports, and apply the laboratorial results to problem identification, quantification, and basic environmental design and technical solutions.

List of Experiments
1. To determine the H_2O_2 in a solution.
2. To determine the Sludge Volume Index (SVI) in the sewage sample.
3. To determine solids in wastewater sample.
4. To determine COD in waste water sample.
5. To determine the presence of invertebrates using microscope.
6. To determine Proximate Analysis in solid waste sample.
8. To determine optimum dose of Alum for Coagulation and Flocculation.
10. To determine the presence of coliform organisms using MPN technique (Presumptive test).

Course Outcomes
Upon successful completion of the course, the students will be able to

- CO1: Perform common environmental experiments relating to water and wastewater quality, and know which tests are appropriate for given environmental problems.
- CO2: Statistically analyse and interpret laboratorial results.
- CO3: Apply the laboratorial results to problem identification, quantification, and basic environmental design and technical solutions.
- CO4: Understand and use the water and wastewater sampling procedures and sample preservations.
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Industrial Waste Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-791</td>
</tr>
<tr>
<td>Course Type</td>
<td>Programme Elective I</td>
</tr>
<tr>
<td>Contact Hours/Week</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives
- Present scenario of industrial waste management in India nationally, in Maharashtra and in other states.
- Industrial waste generation patterns, as well as management and disposal techniques.
- Central and state pollution control board guidelines on industrial waste management.

Course Content
Management of industrial waste for various industries like dairy, sugar, paper, distillery, textile, tannery, food processing, fertilizer, pharmaceutical industrial.
Development of integrated treatment for waste water – physico chemical treatment tertiary treatment methodologies - recent trends in clean technologies – zero polluting industry concept – Reuse and recycle of waste water.

Course Outcomes
After the successful completion of the course student will be able to understand:
- CO1: Schemes, incentives, policies on industrial waste management.
- CO2: Overview of product design for waste minimization.
- CO3: Cost benefit analysis of different waste management techniques

Books and References
3. Industrial Water Pollution Control by Eckenfelder, McGraw-Hill.
Course Name: Computation Techniques in Civil Engineering
Course Code: CE-713
Course Type: Programme Elective I
Contact Hours/Week: 4L
Course Credits: 04

Course Objectives
- To provide an introduction to the basic principles, techniques, and applications of soft computing.
- To provide the mathematical background for carrying out the optimization associated with neural network learning
- To impart the skills of using soft computing in research problems

Course Content

Introduction: Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques, Fuzzy Computing, Neural Computing, Genetic Algorithms
GA: Gene, Chromosome, Allele, Schemata Theory, genotype, phenotype, competition and selection – different types, Crossover – different techniques, elitism, mutation – different types, stopping criteria, Flow chart of GA.
Evolutionary Algorithm: Simulated annealing, Evolutionary programming, hill climbing
Fuzzy: Membership function, fuzzyfication, fuzzy operator, interference rules, defuzzyfication, exploration and exploitation
PSO, Ant colony optimization

Course Outcomes

Upon successful completion of the course, the students will be able to
CO1: Apply soft computing techniques in research problems

Books and References
Course Name: Environmental Impact Assessment
Course Code: CE-715
Course Type: Programme Elective I
Contact Hours/Week: 4L
Course Credits: 04

Course Objectives
- To understand the concepts of ecology, sustainable development and EIA.
- To explore current EIA process in India.
- To acquire knowledge about various methods for conducting EIA, Environmental Legislation & Environmental Audit

Course Content

Course Outcomes
Upon successful completion of the course, the students will be able to
- CO 1: Understand the importance & concepts of carrying out EIA.
- CO 2: Acquire knowledge about current EIA process in India.
- CO 3: Acquire knowledge about various methods & data requirements for conducting EIA.
- CO 4: Analyze Impact’s associated with various components of environment.
- CO 5: Plan for mitigation of the impacts & monitor the mitigation measures.
- CO 6: Acquire knowledge about Environmental Legislation & Environmental Audit.

Books and References
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Geo-environmental Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-732</td>
</tr>
<tr>
<td>Course Type</td>
<td>Programme Elective I</td>
</tr>
<tr>
<td>Contact Hours/Week:</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits:</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives

- Understand the geoenvironmental issues at global, regional, and local levels
- Familiarize with the current environmental problems
- Identify the Sources of wastes and options available for Waste management
- Landfill design and considerations
- Geosynthetics and natural Geotextiles and their role in geoenvironmental engineering
- Expose themselves to real geoenvironmental problems, and link them with the community and the industry

Course Content

Introduction: Introduction to Geo environmental engineering, environmental cycle, sources, production and classification of waste, causes of soil pollution, factors governing soil-pollutant interaction, Safe disposal of waste.

Contaminant Transport: Contaminant transport in sub surface, advection, diffusion, dispersion, governing equations, contaminant transformation, sorption, biodegradation and ion exchange.

Landfill design and considerations: Precipitation, hydrological consideration in land fill design, site selection for landfills, characterization of land fill sites, waste characterization, stability of landfills, current practice of waste disposal, passive containment system.

Geosynthetics in environmental geotechnics: Application of geo synthetics in solid waste management, rigid or flexible liners, bearing capacity of compacted fills, foundation for waste fill ground.

Ground water pollution: – Ground water pollution, pollution of aquifers by mixing of liquid waste, protecting aquifers.

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: learn the design of landfills and shall be able to handle the geoenvironmental problem in actual practice.

Books and References

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Introduction to Climate Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE - 792</td>
</tr>
<tr>
<td>Course Type</td>
<td>Programme Elective II</td>
</tr>
</tbody>
</table>

Contact Hours/Week: 4L
Course Credits: 04

Course Objectives
- Able to identify causes for climate change and to classify causes based on time-scales
- Gain the historical perspective necessary to assess our recent changes in climate (i.e. global warming over the last 100 years) and the scientific basis to analyze and critique policy issues related to global warming.

Course Content

The physical science of climate change
- Climate System; Causes of Climate Change, Climate data and trends; Analyses of climate data; Global atmospheric composition: Greenhouse gases and aerosols; Extreme weather events, sea level rise; Climate projections and their uncertainties.
- Climate impacts, vulnerability and risks: Assessing climate impacts on key sectors and systems (heat stress, water resources, coastal zones, agricultural systems); Concepts of vulnerability and risk; Assessing vulnerability and risk; Concepts of coping, adaptation and risk management, adaptive capacity, indicators and metrics; Adaptation planning and management including mainstreaming and climate resilient development.
- Climate mitigation and policy: Economics of climate change, Least cost carbon strategies; Frameworks for multi-criteria mitigation assessment; Multilateral and national responses; International climate negotiations and geopolitics of response; Policies and measures, including CDM, emissions trading; National policies for climate change (NAPCC, national missions).

Course Outcomes

CO1: Identify the anthropogenic drivers of climate change.
CO2: Explain observed and projected trends and impacts in the climate
CO3: Analyse different climate change scenarios and their implications.

Books and References

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Environmental Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE - 793</td>
</tr>
<tr>
<td>Course Type</td>
<td>Programme Elective II</td>
</tr>
<tr>
<td>Contact Hours/Week</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives

- Understand environmental management approaches
- Understand deliberate efforts to translate environmental knowledge into action in order to achieve particular outcomes in the way landscapes, societies and/or natural ecosystems are used and managed.
- Gain the historical perspective necessary to assess our recent changes in climate (i.e. global warming over the last 100 years) and the scientific basis to analyze and critique policy issues related to global warming.

Course Content

- Concept of Sustainable Development and Clean Development Mechanisms (CDMs);
- Overview of Environmental Laws and International Treaties;
- Environmental Impact Assessment (EIA) and Environmental Management Plan (EMP) for Industries and other Developmental Projects;
- Life Cycle Assessment of Products, Processes and Services;
- Concepts of Environmental Justice and Environmental Ethics;
- Environmental Movements; Environmental Activism.

Course Outcomes

- CO1: Analyse environmental management in relation to the principles of sustainable development.
- CO2: Translate generic concepts and methods into critical reviews of contemporary, real-world environmental management practices.

Books and References

Course Name: GIS and its Application in Civil Engineering
Course Code: CE-718
Course Type: Programme elective II

Course Objectives
- Understanding the need of CAD and GIS,
- Understanding map projection and working with coordinate systems,
- Understanding vector-based and raster-based data data analysis,
- Review of application areas of GIS in Civil Engineering, and
- Understanding basic principles of remote sensing.

Course Content
Basics of remote sensing: Introduction to Remote Sensing, data acquisition and processing, Electromagnetic Radiation (EMR) and its characteristics, Radiation principles, prosperities of solar radiant energy, atmospheric windows. Interaction in the atmosphere, nature of atmospheric interaction, atmospheric effects of visible, near infra-red thermal and microwave wavelengths, interaction at ground surface, interaction with soils and rocks, effects of soil moisture, organic matter, particles, size and texture, interaction with vegetation, spectral characteristics of individual leaf, vegetation canopies, effect of leaf pigments, radiation geometry. Introduction with GIS: Def. of GIS, Difference between GIS and CAD worlds, utility of GIS, various GIS packages and their salient features, essential components of a GIS, scanners and digitizers. Map projection and coordinate systems: Introduction, geographic Grid, Map projection, Coordinate systems. Vector data models and Analysis: vector data and its representation, topological data structure, non-topological vector data structure, TIN, Region, vector data editing and analysis. Raster data models and Analysis: acquiring and handling of raster data storage, function of raster-based GIS data analysis. Engineering applications of GIS: applications of GIS in civil engineering

Course Outcomes
Upon successful completion of the course, the students will be able to
CO1: Understand the principles of remote sensing,
CO2: Understand the principles of geographic information systems,
CO3: Apply remote sensing and GIS to solving problems of Civil Engineering,
CO4: Maximize the efficiency of planning and spatial decision making, and
CO5: Integrate geographically referenced data and develop queries to generate usable information.

Books and References
3. Concept and Techniques of Geographical Information systems : C.P. Lo and Albert K.W.Yeung
4. Introduction to Geographical Information systems : Kang-tsung Chang
5. Geographical Information systems- A Management Perspective : Stan Aromoff
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Hazardous Waste and Remediation of Contaminated Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-736</td>
</tr>
<tr>
<td>Course Type</td>
<td>Programme Elective II</td>
</tr>
<tr>
<td>Contact Hours/Week:</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits:</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives

- Understand the hazardous waste issues at global, regional, and local levels
- Familiarize with the current environmental problems
- Identify the Sources of hazardous wastes
- Learn contaminated sites remediation techniques

Course Content

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Learn the sources of hazardous waste and remediation techniques of contaminated sites and ground water.

Books and References

5. Handbook of Chemistry and Physics, CRC Press, any of the past fifteen years.
Course Name : Bioremediation-Principles and Applications
Course Code : CE-701
Course Type : Programme Elective III

Contact Hours/Week: 4L
Course Credits: 04

Course Objectives
- The purpose of this course is to introduce the underlying biogeochemical concepts pertinent to remediation of soil and groundwater, and describe how systems can be successfully engineered to support/promote remediation with an emphasis on bioremediation.

Course Content
Introduction; Contaminated soil remediation options; Containment systems - Cover systems, Vertical barriers, Horizontal barriers, Hydraulic control measures; In-situ treatment systems; Ex-situ treatment systems; Factors affecting bioremediation - Microbial constrains, Chemical constrains, Biodegradability of contaminants; Other contaminant properties - Nutrients, Oxygen, air, hydrogen peroxide, Alternative electron acceptors, Metal ions, Toxic compounds, Biogeochemical parameters; Environmental constrains - Temperature, pH, Moisture content - water activity, Redox potential. Bio-stimulation; Bio-augmentation; Monitored natural attenuation; Biotransformation of metals, metalloids and radionuclides; Bio-precipitation; Bio-reduction –Bio-oxidation; Bio-sorption; Phytoremediation.

Course Outcomes
CO1. Identify which pollutants are of greatest concern, describe the principles of various physical and chemical remediation technologies and relate selection of these technologies to the properties of contaminants.
CO2. Determine what is needed for site characterization, explain the relevance to selection of appropriate remediation strategies, and determine when bioremediation is an appropriate technology and its advantages and limitations.

Books and References
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Design of Treatment Plants and Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-702</td>
</tr>
<tr>
<td>Course Type</td>
<td>Programme Elective III</td>
</tr>
<tr>
<td>Contact Hours/Week</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives
- To provide detailed information on wastewater treatment plants.
- Designing of components for environmental waste treatment plants

Course Content
Design of screens, grit chamber, skimming tank, and flotation tank. Design of equalization tank, Design of plug flow and complete mix activated sludge process, secondary settling tank, trickling filter, bio tower, rotating biological contactors, sequencing batch reactor, oxidation ditch, and aerated lagoon.
Design of oxidation ponds, Inhoff tank, septic tank, design of sludge digestion, sludge thickening unit, sludge trying bed, incinerators, Design of anaerobic reactors, Design of anaerobic filter, UASB reactor. Design of disposal system.

Course Outcomes
Upon successful completion of the course, the students will be able to
CO1: Depth knowledge of designing of components of treatment plant.
CO2: Candidate should be able to calculate the design methods.

Books and References
1. Ministry of Urban development, Govt of India – Manual for Sewage Treatment.
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Environmental Hydrology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-722</td>
</tr>
<tr>
<td>Course Type</td>
<td>Programme Elective III</td>
</tr>
<tr>
<td>Contact Hours/Week</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives

- To analyse and calculate the basic flows within the hydrological cycle in terms of the quantities of water and energy that move within various states.
- To integrate hydrological principles and river management objectives to negotiate and formulate water basin management contracts among opposing viewpoints.
- To enable students to describe the basic legal principles and conflict resolution alternatives that is relevant to river basin management.

Course Content

- Basic concepts of environmental hydrology; water cycle, water balance and hydrological processes; environment and water; hydrology and climate, physical and biological interactions; water-related environmental problems; hydrological characteristics of India; drinking water, drinking water regulation and standards, water testing; forest hydrology, hydrological processes in forested area; urban hydrology, urbanization and hydrological processes, runoff process and flood; storm water storage and infiltration, reconstruction of urban water cycle; domestic, industrial, commercial, agriculture, and public water uses; water rights and development; water pollution and water quality policy, point and non-point source pollution and control, self-purification; sewage treatment; groundwater pollution, background and measurements of groundwater contamination, sources and fate of contaminants, organic solvents, phosphate and nitrate, remediation.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Effectively communicate hydrologic concepts and research.
- CO2: Collect and analyze hydrologic data.
- CO3: Understand a basic hydrologic or water resources research project that involves integrated problem solving.

Books and References

Course Name
Environmental Toxicology and Health

Course Code
CE-703

Course Type
Programme Elective IV

Contact Hours/Week: 4L
Course Credits: 04

Course Objectives
- Exposure of man and animal to potentially hazardous environmental factors of chemical, biological or physical nature.
- The effects caused by such exposure on health of man, animal and environment.

Course Content
- Dimensions of environmental health, causative agents of diseases, social factors, urban problems, housing and health, economy and health, climate and other atmospheric elements, violence, crime and mental health, family health practice, health care planning and delivery, chronic and communicable diseases.
- Industrial and agricultural pollutants, occupational health, epidemiological data, occupational health hazards, environmental exposure and diseases, industrial toxicants, hazardous wastes, preventing exposure to unhealthy and unsafe working conditions, ergonomics, controlling stress of life.
- Disease control, disease prevention, morbidity and mortality, diseases and progressive deterioration, controlling diseases and disability.
- Foodborne and waterborne diseases outbreaks, Nuclear energy and environmental health, concerns and uncertainties about nuclear power, nuclear power plants, safety.
- Environmental health planning, need for planning, the planning process. Environmental health services, various agencies, international efforts, role of industry, voluntary health agencies, Law and human welfare, public health and the law, constitutional right to healthy environment, environmental education Health aspects of water supply and sanitation, disposal of wastewater in rural and urban areas, integrated approach to health and sanitation.
- Transmission of diseases through air, water and food. Insect vector and rodent control. Excreta treatment and management in rural and urban slums, low cost options. Software related to environmental health and hygiene.

Course Outcomes
- CO1: Critically evaluate different advanced exposure assessment methods
- CO2: Design strategies for exposure assessment
- CO3: Analyse and interpret exposure measurements applying different modelling tools (stochastic and deterministic).

Books and References
Course Name : Disaster Management
Course Code : CE-723
Course Type : Programme Elective IV

Contact Hours/Week: 4L Course Credits: 04

Course Objectives
- To impart knowledge about the disaster Management
- To introduce the fundamental concepts relevant to various aspect of disaster
- To enable the students to understand the factors that causes the disaster.
- To be able to assess risk and vulnerability for natural and man-made hazard

Course Content

Course Outcomes
After learning the course, the students should be able to:
CO1: Understand disasters, disaster preparedness, role of IT, remote sensing, GIS and GPS,
CO2: Understand Rehabilitation, Reconstruction and Recovery,
CO3: Apply knowledge Disaster Response and Management, Risk Assessment and Vulnerability Analysis.
CO4: Understand Disaster Mitigation

Books and References
1. Natural Hazards, Bryant Edwards, Cambridge University Press, U.K.
Course Name: River Engineering
Course Code: CE-726
Course Type: Programme Elective IV
Contact Hours/Week: 4L
Course Credits: 04

Course Objectives
- To enable students to apply fundamental concepts and techniques of hydraulics and hydrology in the analysis, design, and operation of water resources systems.
- To understand the mechanism of transport of various matters in rivers, and acquire the skills for evaluating the amounts of sediment transport and river bed evolution, and applying each element technology to practical problems.

Course Content
Introduction to river engineering, River classifications, thresholds in river morphology, hydraulic geometry, meander plan form, geomorphic analysis of river channel responses; Fundamentals of alluvial channel flows, uniform and unsteady cases, shear stress distribution, flow resistance in rivers; Physical properties of sediments, sediment movement in rivers, shear stress, Shields diagram, scouring around bridge piers and embankments, river bed forms; Analysis of river meanders, design of stable alluvial channels-regime concept, dimensional model studies for rivers, braided rivers, scaling and hierarchy in braided rivers, alternate bars, bed load transport in braided gravel-bed rivers; Stream bank erosion, bank protection, flow control structures, bank protection and river training along braided rivers.

Course Outcomes
Upon successful completion of the course, the students will be able to
CO1: Identify and justify appropriate engineering solutions.
CO2: Make observations of and investigate hypotheses about river processes and the impacts of river engineering alternatives.
CO3: Familiarize regional and global river systems and management

Books and References
5. Fluvial Forms and Processes by Knighton, D., Edward Arnold, Baltimore, MD.
6. Rivers Form and Process in Alluvial Channels by Richards, K., Methuen, NY.
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Transportation Environment Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CE-786</td>
</tr>
<tr>
<td>Course Type</td>
<td>Programme Elective IV</td>
</tr>
<tr>
<td>Contact Hours/Week</td>
<td>4L</td>
</tr>
<tr>
<td>Course Credits</td>
<td>04</td>
</tr>
</tbody>
</table>

Course Objectives
- To impart the knowledge of how transportation facilities affecting the environment
- To make the students understand the noise sources and its mitigation for urban and non-urban transportation
- To make the students understand different vehicle emission parameters, pollution standards and its mitigation strategies

Course Content

Course Outcomes
Upon successful completion of the course, the students will be able to
- CO1: Map traffic noises
- CO2: Model vehicle emission for given conditions
- CO3: Design transportation facility ensuring less environmental impact as per standard guidelines

Books and References