Course Curriculum (Course Structure and Syllabi) for Bachelor of Technology in Mathematics and Computing

(Second Year Onwards)

Department of Mathematics and Scientific Computing National Institute of Technology Hamirpur Hamirpur – 177 005 (India)

	Second Year												
3 rd Semester							4th Semester						
SN	Code	Subject	L	Т	Ρ	Credits	SN	Code	Subject	L	Т	Ρ	Credits
1	MA-203	Engineering Mathematics-III	3	1	0	4	1	HS-203	Organizational Behaviour	3	0	0	3
2	MA-211	Discrete Mathematics	3	1	0	4	2	MA-221	Linear Algebra and Applications	3	1	0	4
3	MA-212	Stochastic Processes	3	1	0	4	3	MA-222	Statistical Methods	3	1	0	4
4	MA-213	Computer Graphics	3	0	0	3	4	MA-223	Data Structure	3	1	0	4
5	CS-211	Object Oriented Programming	3	1	0	4	5	MA-224	Operating System	3	1	0	4
6	MA-214	Computer Graphics Lab	0	0	2	1	6	MA-225	Data Structure Lab	0	0	2	1
7	MA-215	Mathematical Software Lab	0	0	2	1	7	MA-226	Statistical Methods Lab	0	0	2	1
8	CS-214	Object Oriented Programming Lab	0	0	2	1	8	MA-227	Operating System Lab	0	0	2	1
		Total Hours	= 25			22			Total Hour	's = 2	5		22

Third Year													
		5 th Semester					6 th Semester						
SN	Code	Subject	L	Т	Ρ	Credits	SN	Code	Subject	L	Т	Р	Credits
1	MA-311	Operation Research	3	1	0	4	1	MA-321	Real and Complex Analysis	3	1	0	4
2	MA-312	Number Theory and Abstract Algebra	3	1	0	4	2	MA-322	Advanced Differential Equations and Applications	3	1	0	4
3	MA-313	Data Base Management Systems	3	1	0	4	3	MA-323	Time Series Analysis and Forecasting	3	1	0	4
4	MA-314	Programming in Python	3	0	0	3	4	MA-324	Soft Computing	3	0	0	3
5	OET	Open Elective-I	3	0	0	3	5	OET	Open Elective-II	3	0	0	3
6	MA-315	Data Base Management Systems Lab	0	0	2	1	6	MA-325	Numerical Computation Lab	0	0	2	1
7	MA-316	Programming in Python Lab	0	0	2	1	7	MA-326	Time Series Analysis Lab	0	0	2	1
8	MA-317	Statistical Software Lab	0	0	2	1	8	MA-329	Seminar	0	0	2	1
		Total Hours =	24			21			Total Hou	ırs = 24			21

						Fourt	n Year						
		7 th Semester							8 th Semester				
SN	Code	Subject	L	Т	Ρ	Credits	SN	Code	Subject	L	Т	Ρ	Credits
1	HS-404	Engineering Economics and Accountancy	3	0	0	3	1	MA-421	Artificial Intelligence	3	0	0	3
2	MA-411	Cryptography and Information Security	3	0	0	3	2	MA-422	Multivariate Statistical Analysis	3	0	0	3
3	DET	Professional Elective-I	3	0	0	3	3	DET	Professional Elective-III	3	0	0	3
4	DET	Professional Elective-II	3	0	0	3	4	DET	Professional Elective-IV	3	0	0	3
5	MA-418	Industrial Training Presentation	0	0	2	1	5	MA-428	General Proficiency	0	0	0	1
6	MA-419	Major Project (Stage-I)	0	0	12	6	6	MA-429	Major Project (Stage-II)	0	0	12	6
		Total Hours =	26			19			Total Hours = 24			19	

Semester Wise Credits									
Semester	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	Total
Credits	24	24	22	22	21	21	19	19	172
Hours/week	28	28	25	25	24	24	26	24	204

Professional Elective Courses

Professional Elective-I

MA-430: Game Theory MA-431: Advanced Optimization Techniques & Applications MA-432: Information Theory and Coding MA-433: Graph Theory MA-434: Analysis and Design of Algorithms

Professional Elective-II

MA-450: Digital Image Processing MA-451: Data Mining MA-452: Parallel Algorithms MA-453: Design and Analysis of Experiments MA-454: Quantum Information and Computing

Professional Elective-III

MA-440: Mathematical Foundations for Machine Learning MA-441: Data Analysis Using Python MA-442: Theory of Computation MA-443: Operator Theory MA-444: Computer Networks

Professional Elective-IV

MA-460: Deep Learning MA-461: Financial Mathematics MA-462: Data Science and Big Data Analytics MA-463: Software Engineering MA-464: Topology

Open Elective Courses

Open Elective-I

MA-370: Statistical Quality Control MA-371: Applied Time Series Analysis

Open Elective-II

MA-380: Principles of Design of Experiments MA-381: Numerical Methods for Partial Differential Equations

Course Name:	Engineering Mathematics-III	
Course Code:	MA-203	
Course Type:	Core	
Contact Hours/	Neek: 3L + 1T	Course Credits: 04
Course Object	ives	
To introduc	e the fundamental concepts relevant to function of complex variable, numerical differentiation	and integration and
numerical s	olution of linear, non-linear and system of equations.	
To have the	idea of evaluation of real integrals using complex variable.	
To understa	nd the concept of approximating & interpolating polynomials and finding values of function at arbitra	ary point.
 To impart ki 	nowledge of various numerical technique to solve ODE.	
Unit Number	Course Content	Lectures
UNIT-01	Functions of Complex Variable	12 L
	Applications of De Moivre's theorem, Exponential, Circular, Hyperbolic and Logarithmic functions	
	of a complex variable, Inverse Hyperbolic functions, Real and imaginary parts of Circular and	
	Hyperbolic functions, Summation of the series-'C+iS' method.	
	Limit and derivative of complex functions, Cauchy-Riemann equations, Analytic functions and its	
	applications, Complex integration, Cauchy's theorem, Cauchy's integral formula, Series of	
	complex function, Taylor series, singularities and Laurent's series, Cauchy's residue theorem	
	and its application for the evaluation of real definite integrals.	
UNIT-02	Interpolation	06L
	Least square curve fit and trigonometric approximations, Finite differences and difference	
	operators, Newton's Interpolation formulae, Gauss forward and backward formulae, Sterling and	
	Bessel's formulae, Lagrange's Interpolation.	051
UNIT-03	Numerical Integration	UƏL
	Integration by trapezoidal and Simpson's rules 1/5 and 5/6 rule, Romberg integration, and Causaian guadrature rule. Numerical integration of function of two variables.	
UNIT-04	Numerical Solution of Ordinary Differential Equations	07L
	Taylor series method, Picard's method, Euler's method, Modified Euler's method, Runge-Kutta	
	method. Predictor corrector methods, Adam Bashforth and Milnes method, convergence criteria,	
	Finite difference method.	001
UNIT-05	Numerical Solution of Linear and Non Linear Equations	06 L
	Non Linear Equations. Disection Method, Regula Faisi Method, Newton-Raphson Method,	
	Linear Equations: Jacobi and Gauce Soidel Iteration methods. Polovation method	
Course Outcor		
Linon successfi	il completion of the course, the student will be able to:	
CO1: Underst	and and analyze the concent of Numerical Solution of Linear and Non Linear Equations (Ordinary Differential
Equation	and Euroction of complex variable	Bindidi Bindidinida
CO2: Identify	an appropriate technique to solve the linear, non-linear equations, ordinary differential equations.	
CO3: Formula	te the problems on related topics and solve analytically.	
CO4: Apply th	ne concepts of linear, non-linear equations, differential equations and complex analysis in v	various engineering
problem	S.	0 0
CO5: Demons	trate the concepts through examples and applications.	
Books and Ref	erences	
1. Complex v	ariables and Applications by R. V. Churchill, J. W. Brown & R. F. Verhey, McGraw Hill.	
2. A first cour	se in complex analysis with applications by Dennis G. Zill & P. D. Shanahan, Jones and Bartlett.	
3. Numerical	Methods for Scientific and Engineering Computation by M. K. Jain, S. R. K. Iyenger and R.	K. Jain, New Age
Internation	al Publishers, New Delhi	
4. Numerical	Methods for Engineers and Scientists (2 nd Ed.) by J D Hoffman, CRC Press.	
5. Numerical	Analysis Mathematics and Scientific computing (3rd ed.) by D. Kincaid and W. Cheney, Ame	erican Mathematical
Society.		

Course Name:	Discrete Mathematics	
Course Code:	MA-211	
Course Type:		Osuma Osadita 04
Contact Hours/		Course Credits: 04
Course Object	ives In the first the first three statistics of the first three statistics of the first three statistics of the first	
Io provide	students with the foundations of set theory, graph theory, relations, functions, Boolean alge	bra and recurrence
Telations.		
To develop	logical thinking and its application to computer science.	
Io ennance	students ability to reason and ability to present a conerent and mathematically accurate argument.	1 4
	Course Content	Lectures
UNIT-01	Set I neory: Introduction to the theory of sets; combination of sets; power sets; finite and infinite	06L
	sets, principle of inclusion and exclusion, selected problems from each topic.	
	roofs	
	Mathematical Induction: Different forms of the principle of mathematical induction. Selected	
	problems on mathematical induction	
UNIT-02	Graph Theory: Path, cycles, handshaking theorem, bipartite graphs, sub-graphs, graph	08L
	isomorphism, operations on graphs, Eulerian graphs and Hamiltonian graphs, planar graphs.	••-
	Euler formula, traveling salesman problem, shortest path algorithms.	
UNIT-03	Relations and Function: Definitions and properties; pigeonhole principle, Equivalence relations	08L
	and equivalence classes; Representations of relations by binary matrices and digraphs;	
	operations on relations; Closure of a relation; reflexive, symmetric and transitive closures.	
	Warshall's algorithm to compute transitive closure of a relation, growth of function, big O, hash	
	function, discrete numeric functions; asymptotic behavior; generating functions.	
UNIT-04	Partially Ordered Sets and Lattices: Partial order relations, POSETS, lattices, isomorphism of	07L
	Boolean Algebra and Boolean Functions: Introduction to Boolean algebra and Boolean	
	functions, Different representations of Boolean functions, Application of Boolean functions to	
	Synulesis of circuits, circuit minimization and simplification, ramaugit map.	071
0001-05	case): discussion of all the three sub cases: linear recurrence relations with constant coefficients	0/L
	(non-homogeneous case): discussion of several special cases to obtain particular solutions	
	Solution of linear recurrence relations using generating functions	
Course Outcor	nes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Const	ruct simple mathematical proofs and possess the ability to verify them.	
CO2: Expre	ss mathematical properties via the formal language of propositional and predicate logic.	
CO3: Under	rstand and analyze recursive definitions.	
CO4: Use g	raph algorithms to solve real life problems.	
CO5: Evalu	ate Boolean functions and simplify expressions using the properties of Boolean algebra.	
Books and Ref	erences	
1. Elements of I	Discrete Mathematics by C. L. Liu, Tata McGraw-Hill.	
2. Introductory (Combinatorics by R. A. Brualdi, Pearson.	
3. Discrete Mati	nematics for Computer Scientists and Mathematicians by J. L. Mott, A. Kandel and T. P. Baker, Pre	ntice Hall India.
4. Graph Theor	y by F. Halaly, Narosa. comption with Applications by T. Koshy, Academic Press.	
6 Discrete Mat	remains with Applications by L. Noshy, Academic Mess	
7 Discrete mat	remains and its Applications by N. H. Nosen, Tata WCOIdW-Fill. Dematical structures with applications to computer science by 1. Tremblay, D. Mancher, Tata McCri	aw-Hill
7. Discrete mati	rematical structures with applications to computer science by 5. Tremblay, R. Manonar, Tata McGra	aw-⊓III.

Course Name	Stochastic Processes	
Course Code:	MA-212	
Course Type	Core	
Contact Hours/	Week: 3L + 1T	Course Credits: 04
Course Object	lives	
 To provide 	students with the foundations of probabilistic and statistical analysis techniques used in v	various engineering
applications	δ.	
 To define a 	nd identify some basic probability distributions and random variables.	
To introduc	e the fundamental concepts relevant to the modeling of experimental data.	
To enable t	he students to understand the physical process in real life situations in terms of probability models.	
Unit Number	Course Content	Lectures
UNIT-01	Probability and Random Variable: Axioms of probability, Conditional probability, Total probability,	06L
	Baye's theorem, Random variable, Probability mass function, probability density function, properties,	
	Moments, Moment generating function and their properties.	
UNIT-02	Two Dimensional Random Variables: Joint distributions, Marginal and conditional distribution,	06L
	Covariance, Correlation and regression, Function of a random variable, Transformation of random	
	variables, Central limit theorem.	
UNIT-03	Probability Distributions:	12L
	Standard Discrete Distributions: Binomial, poison, Geometric, Negative Binomial, Uniform and their	
	properties, Probability mass function and its properties.	
	Standard Continuous Distributions: Uniform, Exponential, Gamma, Weibull and Normal	
	distributions and their properties, Probability density function and its properties.	
UNIT-04	Random Processes & Markov Chains: Classification and properties of stochastic processes,	06L
	Stationary process, Markov process, Poisson process, Birth and death process, Markov chains,	
	transition probabilities, Limiting distributions.	001
UNIT-05	Queuing Theory: Markovian models – M /M/T, M/M/C, finite and infinite capacity- M/M/o	06L
	formula Special cases	
Course Outco		
	ul completion of the course, the students will be able to	
CO1 [·] Understa	nd and analyze the theoretical and practical aspects of random variables, theoretical distributions	
CO2: Identify a	n appropriate theoretical distribution to fit the empirical data and find out the properties of data.	
CO3: Understa	nd and apply the concept of stationarity to the stochastic processes in various contexts.	
CO4: Understa	nd and apply the concept of queuing models in various contexts.	
Books and Re	ferences	
1. A First Cou	rse in Probability by S. Ross, Pearson Education, Delhi.	
2. Probability,	Statistics and Random Processes by T. Veerarajan, Tata McGraw – Hill.	
3. Fundament	als of Mathematical Statistics by S.C. Gupta, V.K. Kapoor, Sultan Chand & Sons, New Delhi.	
4. Applied Sta	tistics and Probability for Engineers by D.C. Montgomery, G.C. Runger, Wiley.	

- Probability and Statistics for Engineers and Scientists by R.E. Walpole, R.H. Myers, S. L. Myers, K.E. Ye, Pearson.
 Probability and Statistics with Reliability, Queuing and computer science applications by K.S. Trivedi, Wiley.

Course Name:	Computer Graphics	
Course Code:	MA-213	
Course Type:	Core	0 0 11 00
Contact Hours/	Neek: 3L	Course Credits: 03
Course Object	IVes	
I o introduce	e use of components of a graphics system and become familiar with building approach of graphics	system components
and algorith	ms related with them.	
I O discuss	the application of computer graphics concepts in the development of computer games, information	on visualization, and
business ap	plications.	
Io compren	course Content	les.
	Course Content	
	Devices Interactive Input Devices Display Processors The Graphical Kernel System Output	UOL
	Primitives	
	Graphics Hardware: Display technology, random scap, raster scap, display processing, input	
	devices for interaction	
UNIT-02	Points and Lines: Points & lines. Line drawing algorithms: DDA algorithm. Bresenham's line	06L
0	algorithm. Circle generation algorithm: Ellipse generating algorithm: scan line polygon, fill	
	algorithm, boundary fill algorithm, flood fill algorithm.	
UNIT-03	2D Transformations: Basic transformations: translation , rotation, scaling ; Matrix	08L
	representations & homogeneous coordinates, transformations between coordinate systems;	
	reflection shear; Transformation of points, lines, parallel lines, intersecting lines. Viewing	
	pipeline, Window to viewport co-ordinate transformation, clipping operations, point clipping, line	
	clipping, clipping circles, polygons & ellipse.	
UNIT-04	3D Transformations: translation, rotation, scaling & other transformations. Rotation about an	09L
	arbitrary axis in space, reflection through an arbitrary plane; general parallel projection	
	transformation; clipping, viewport clipping, 3D viewing	
	Curves: Curve representation, surfaces, designs, Bezier curves, B-spline curves, end conditions	
	for periodic B-spline curves,.	
	Hidden Surfaces : Depth comparison, Z-buffer algorithm, Back face detection, BSP free	
	method, the Printer's algorithm, scan-line algorithm; Hidden line elimination	071
UNIT-05	Visible Lines and Visible Surfaces: Visual Realism, Hidden line and hidden surface removal:	0/L
	depth buffer algorithm, geometric computations, scan line concrence algorithms, area concrence	
	algorithms, phonty algorithm, shauling and color models, modeling methods.	
	Multimedia: Introduction to Multimedia: Concente uses of multimedia hypertext and	
	hypermedia. Introduction to Multimedia. Concepts, uses of multimedia, hypertext and	
Course Outcor		
Upon successfu	I completion of the course, the students will be able to	
CO1 [·] List the b	asic concepts used in computer graphics	
CO2: Implement	t various algorithms to scan, convert the basic geometrical primitives, transformations, area filling.	clippina.
CO3: Define the	e fundamentals of animation, virtual reality and its related technologies and To understand a typical	graphics.
CO4: Design ar	n application with the principles of virtual reality.	0
Books and Ref	ferences	
1. Procedural	Elements for Computer Graphics by D.F. Rogers, Tata McGraw Hill.	
2. Computer G	Graphics by D.D. Hearn, M.P. Baker, Prentice Hall of India.	
3. Computer G	Graphics - A programming approach by S. Harrington, Tata McGraw Hill.	
4. Mathematic	al Elements for Computer Graphics by D.F. Rogers, Tata McGraw Hill.	

Course Name:	Object Oriented Programming	
Course Code:	CS-211	
Course Type:	Core	
Contact Hours/	Week: 3L + 1T	Course Credits: 04
Course Object	ives	
To impart k	nowledge about the concept of Object Oriented programming.	
To introduce	e the fundamental concepts relevant to Arrays, Pointers and Functions, Classes, Objects, etc.	
To enable t	he students to understand the standard library, exception handling, streams and files.	
Unit Number	Course Content	Lectures
UNIT-01	Concepts of Object-Oriented Programming: Object Oriented Programming Paradigm, Basic concepts of OOPs, Benefits of OOPs, and Introduction to object oriented design and development, Design steps, Design example, Object oriented languages, Comparison of structured and object-oriented programming languages.	06L
UNIT-02	Arrays, Pointers and Functions: Arrays, Storage of arrays in memory, Initializing Arrays, Multi- Dimensional Arrays, Pointers, accessing array elements through pointers, passing pointers as function arguments, Arrays of pointers, Pointers to pointers, Functions, Arguments, Inline functions, Function Overloading Polymorphism.	06L
UNIT-03	Classes and Objects: Data types, operators, expressions, control structures, arrays, strings, Classes and objects, access specifiers, constructors, destructors, operator overloading, type conversion.	07L
	Storage classes: Fixed vs. Automatic declaration, Scope, Global variables, register specifier, Dynamic memory allocation.	
	Inheritance: Inheritance, single Inheritance, Multiple Inheritance, Multi-level inheritance, hierarchical inheritance, hybrid inheritance, Virtual functions.	
UNIT-04	Streams and Files: Opening and closing a file, File pointers and their manipulations, Sequential Input and output operations, multi-file programs, Random Access, command line argument, string class, Date class, Array class, List class, Queue class, User defined class, Generic Class.	07L
UNIT-05	Exception Handling and Graphics: List of exceptions, catching exception, handling exception. Text Mode, Graphics mode functions, Rectangles, and Lines, Polygons and Inheritance, Sound and Motion, Text in Graphics Mode.	10L
	Standard Template Library: Standard Template Library, Overview of Standard Template Library, Containers, Algorithms, Iterators, Other STL Elements, Container Classes, General Theory of Operation, Vectors.	
Course Outco	mes	
Upon successfu	ul completion of the course, the students will be able to	
CO1: Underst	and the concept of object oriented paradigm and programming.	
CO2: Apply th	e concept of polymorphism and inheritance.	
CO3: Impleme	ent exception handling and templates.	
Books and Bo	g or mes and sitearns during programming.	
1 Object Original	iciciiices ented programming with C++ by E. Balagurusamy. Tata McGraw Hill	
2 The C++ n	programming Language by Biarne Strustrun, Addison Wesley	
3. Object Ori	ented Analysis and Design with Applications by Grady Booch Addison Wesley	
4. The Comp	lete Reference Visual C++ by Chris H. Pappas and William H. Murrav. Tata McGraw Hill.	
5. C++ Prime	er by S. B. Lippman, Josee Lajoie and Barbara E. Moo, Pearson Education.	

Course Name: Computer Graphics Lab Course Code: MA-214

Contact Hours/Week: 2P

Course Objectives

- To provide comprehensive introduction about computer graphics system.
- To provide skills for writing C programs.
- To make the students familiar with techniques of clipping using programming.

List of Experiments

- 1. To implement DDA algorithms for line and circle.
- 2. To implement Bresenham's algorithms for line, circle and ellipse drawing
- 3. To implement Mid-Point Circle algorithm using C.
- 4. To implement Mid-Point Ellipse algorithm using C.
- 5. To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing.
- 6. To implement Cohen–Sutherland 2D clipping and window–viewport mapping.
- 7. To implement Liang Barksy Line Clipping Algorithm.
- 8. To perform 3D Transformations such as translation, rotation and scaling.
- 9. To convert between color models.
- 10. To perform animation using any Animation software
- 11. To perform basic operations on image using any image editing software
- 12. To draw different shapes such as hut, face, kite, fish etc.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

- Upon successful completion of the course, the students will be able to
- CO1: Identify and abstract the programming task involved for a given problem.
- CO2: Involve in design, development and testing of modelling, rendering, shading and animation.
- CO3: Implement various graphics drawing algorithms, 2D-3D transformations and clipping techniques.

Course Name: Mathematical Software Lab Course Code: MA-215

Contact Hours/Week: 2P

Course Objectives

- To understand and apply the basic principles of programming.
- To provide skills for designing flowcharts and writing MATLAB programs.
- To create simple programming scripts and functions.
- To solve basic and advanced numerical and symbolic mathematics problems.
- To visualize and present data.
- To enable the students to debug programs.

List of Experiments

- 1. Brief Introduction, Installation of MATLAB, History, Use of MATLAB, Key features.
- 2. Introduction to MATLAB Software and MATLAB window.
- 3. Data files and Data types: Character and string, Arrays and vectors, Column vectors, Row vectors.
- 4. Program for Arithmetic operations and equations, Matrix operations, and Trigonometric functions.
- 5. Working with script tools.
- 6. Writing program for Ploting and Graphics
- 7. Writing programs with logic and flow control and Writing functions.
- 8. Use of Control Flow and Conditional Control.
- 9. Writing user defined functions.
- 10. Programs for Symbolic Math.
- 11. Simulink Environment & Interface.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes Upon successful completion of the course, the students will be able to CO1: Represent mathematical objects as data structures. CO2: Translate mathematical methods to MATLAB code. CO3: Break a complex task up into smaller, simpler tasks. CO4: Tabulate results and represent data visually.

Department of Mathematics and Scientific Computing, NIT Hamirpur

Course Name:	Object Oriented Programming Lab
Course Code:	CS-214

Contact Hours/Week: 2P

Course Credits: 01

Course Objectives

- To provide skills for designing object oriented programs.
- To provide skills for writing C++ programs.
- To enable the students to debug and implement programs involving different concepts of object oriented paradigm.

List of Experiments

- 1. Demonstrate simple operations and control structures.
- 2. Demonstrate use of array : i) Add two matrix using multi-dimensional arrays, ii) Searching in arrays, Array of Class, Operations on strings as arrays and to access array elements using pointers.
- 3. Demonstrate use of structure and union.
- 4. Demonstrate use of function by i) To swap numbers in cyclic order using call by reference and to check prime number by creating a function, ii) To find the multiplication values and the cubic values using inline function, iii) To calculate the area of circle, rectangle and triangle using function overloading.
- 5. Read and print students detail using class and object.
- 6. Demonstrate example of friend function with class.
- 7. Demonstrate increment ++ and decrement - variables by using operator overloading.
- 8. Write a program to demonstrate the single inheritance, multilevel inheritance, multiple inheritances, hybrid inheritance and hierarchical inheritance.
- 9. Write a program that shows that two files named 'Source 1' and 'Source 2' contains sorted list of integers. Read the content of both the files and stores the merged list in sorted form in a new file named 'Target'.
- 10. Write a function template to perform linear search in an array.
- 11. Write a program containing a possible exception. Use a try block to throw it and a catch block to handle it properly.
- 12. Write a program to demonstrate container i) using the find () algorithm to locate the position of a specified value in a sequence container, ii) using the algorithm count () to count how many elements in a container have a specified value.
- 13. Write a program to implement Vector in STL.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Identify and abstract the programming task involved for a given problem.
- CO2: Design and develop object oriented programming skills.
- CO3: Trace and debug a program.

Course Name:	Organizational Behaviour	
Course Code:	HS-203	
Course Type:	Core	
Contact Hours/We	ek: 3L	Course Credits: 03

Course Objectives

- To impart knowledge about the behavioural aspects related to professional organizations.
- To introduce the fundamental concepts relevant to understanding of individual & group behavior in the organization.
- To enable the students to understand the applied organizational themes like perception, motivation, interpersonal relationships, group dynamics, leadership theories, role of power & politics in organizational context, conflict and negotiation, organizational diversity, dynamics of personality, attitude and job satisfaction, etc.

Unit Number	Course Content	Lectures
UNIT-01	Organizational Behavior (OB): Concept, nature, characteristics, conceptual foundations.	04L
	determinants and importance, management functions, role & skills, disciplines that contribute to	
	the field of OB. Challenges & Opportunities for OB. diversity in Organizations, attitudes & Job	
	satisfaction.	
UNIT-02	Perception: Concept, nature, process, importance, management and behavioral applications of	08L
	perception. Personality: concept, nature, types and theories of personality shaping. Learning;	
	concept and theories of learning.	
UNIT-03	Motivation: concept, principles, theories-content, process & contemporary, Monetary and non-	06L
	monetary motivation, applications of motivation. Leadership: Concept, functions, styles, and	
	theories of leadership- trait, behavioural, and situational.	
UNIT-04	Group and Interpersonal Relationship: Analysis of Interpersonal Relationship, developing	05L
	interpersonal relationship, Group Dynamic: Definition of Group, stages of Group Development,	
	Punctuated Equilibrium Model, Group Structure, Group Decision Making, understanding work	
	teams.	
UNIT-05	Organizational Power and Politics: concept of power, structure of power, classification of	06L
	power, contrasting leadership & power, dependence a key to power, causes & consequences of	
	political behaviour. Organizational conflict: view of conflict, conflict process, negotiation &	
	bargaining strategies.	
UNIT-06	Conflict and Negotiation: conflict definition in conflict thought: Traditional view, the Human	07L
	relation view, interactionist view. Functional versus dysfunctional conflict, conflict process.	
	Negotiation Bargaining strategies, the negotiation process and issues in negotiation.	
Course Outcor	nes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Identify	the challenges of the present organization.	
CO2: Describe	e the organizational system.	
CO3: Apply th	e principles of organizational behavior to inculcate the habit of team work and which is essential for	the organization.
CO4: Assess	the role of psychological and social principal in improvement of efficiency as well as quality of empo	yee life.
Books and Ref	erences	
1. Organizati	onal Behavior by Robbins, S.P., Prentice Hall of India.	
Organizati	onal Behavior by Luthans F., McGraw-Hill.	

3. Human Behavior at Work: Organizational Behavior by Davis K., Tata McGraw-Hill.

Course Name:	Linear Algebra & Applications		
Course Code:	MA-221		
Course Type:	Course Type: Core		
Contact Hours/	Contact Hours/Week: 3L + 1T Course Credits: 04		
Course Object	IVES		
 I o introduce 	e concepts of linear algebra and provide wide application of this discipline within scientific field.		
To impart k	nowledge about linear transformations, Inner product spaces and Eigen decomposition.		
To enable t	he students with analytical ability to apply the theorems and results in real life engineering application	ons.	
Unit Number	Course Content	Lectures	
UNIT-01	System of Linear Equations: Matrices and elementary row operations, Row reduced echelon matrices, Homogeneous system of linear equations, Elementary matrices, LU Decomposition, Some applications giving rise to Linear Systems Problems.	06L	
UNIT-02	Vector Space: Fields, fields of numbers, finite fields, Vector Spaces over R and C, subspaces, linear independence, basis and dimension of a vector space, ordered basis and co-ordinates, Application to difference equations and markov chains.	08L	
UNIT-03	Linear Transformation: Linear transformations, Rank and Nullity of linear transformation, Algebra of linear transformation, Isomorphism, Invertible linear transformations, Dual and double dual of a vector space and transpose of a linear transformation, Matrix representation of Linear Transformation, eigenvalue and eigenvector of an linear transformation, Discrete dynamical systems, Application to differential equations.	07L	
UNIT-04	Eigen Decomposition: Diagonalizability of linear operators of finite dimensional vector spaces, simultaneous triangulization and simultaneous diagonalization, Primary decomposition theorem - diagonal and nilpotent parts, Applications to Image processing and Statistics.	07L	
UNIT-05	Inner Product Spaces: Gram-Schmidt orthogonalization, best approximation of a vector by a vector belonging a given subspace and application to least square problems, Adjoint of an operator, hermitian, unitary and normal operators, Singular Value Decomposition and its applications. Spectral decomposition, Applications of Inner product spaces.	08L	
Course Outcou	nes		
Upon successfu	I completion of the course, the students will be able to		
CO1: Understa	nd fundamental concepts of system of linear equations and Vector spaces.		
CO2: Understa	nd fundamentals of Inner product space and Eigen decomposition.		
CO3: Able to apply concepts of linear algebra in various engineering application problems			
Books and Re	ferences		
1. Linear algebra and it's applications by G. Strang, Cengage.			
2. Linear Algebra and its Applications by D.C. Lay, Pearson.			
3. Linear Algebra by K. Hoffman and R. Kunze, Pearson.			
4. Linear Algebra: A Modern Introduction by D. Poole, Brooks/Cole.			
5. Linear Algebra: A Geometric Approach by S. Kumaresan, Prentice-Hall of India.			
6. Linear algebr	a (undergraduate text in mathematics) by S. Lang, Springer.		

Course Name:	Statistical Methods		
Course Code:	MA-222		
Course Type:	Core		
Contact Hours/	Contact Hours/Week: 3L + 1T Course Credits: 04		
Course Object	ives		
To impart ki	nowledge about the concept of correlation, regression and hypothesis testing.		
To introduce	e the fundamental concepts relevant to design of experiments and its comparison tests.		
To enable the second seco	he students to understand the concept of factorial designs and comparison with experimental design	٦.	
Unit Number	Course Content	Contact Hours	
UNIT-01	Data Visualization: Measures of central tendency, dispersion, skewness, kurtosis, data representation using Histogram, Pie Chart, Boxplot, Biplot, Multidimensional scaling.	06L	
UNIT-02	Order Statistics: Different order statistics and their single and joint distribution, sampling distribution of mean, variance, random number generation, Generation of random numbers following certain distributions.	06L	
UNIT-03 Correlation and Regression: Measures of relation between two variables – correlation and Rank correlation – Kendall's Tau; Partial and Multiple correlation coefficients – Regression – Curve fitting by least squares – linear and quadratic 08L			
UNIT-04	Hypothesis Testing: Types of errors and power - most powerful tests, Test for equality of means and variances – t and F test; Chi-square test for goodness of fit and independence of attributes, Analysis of variance with one–way and two–way classifications.	10L	
UNIT-05	Multiple Comparison Tests: Least Significant Difference, Student-Newman–Keuls test, Duncan's Multiple Range test, Tukey's test	06L	
Course Outcor	mes		
Upon successfu	I completion of the course students will be able to		
CO1: Identify and describe the data types and preparing the hypothesis according to the given data.			
CO2: Apply statistical tests to the real time data set and draw the conclusions.			
CO3: Write the statistical interpretation of the data.			
Books and References			
1. Fundamentals of Mathematical Statistics by S. C. Gupta and V.K. Kapoor, Sultan Chand and Sons.			
2. Design and	2. Design and Analysis of Experiments by D.C. Montgomery, John Wiley and Sons.		

3. Fundamentals of Applied Statistics by S. C. Gupta and V.K. Kapoor, Sultan Chand.

4. Statistical Inference – Testing of Hypotheses by M. K. Srivastava and N. Srivastava, Prentice Hall of India.

5. An Introduction to Probability and Statistics by V.K. Rohatgi and A. K. Saleh, John Wiley and Sons.

6. Applied Statistics and Probability for Engineers by D.C. Montgomery, G.C. Runger, John Wiley and Sons.

7. Design and Analysis of Experiments by M.N. Das and N.C. Giri, Wiley Eastern Ltd.

Course Name:	Data Structure		
Course Code: MA-223			
Course Type:	Core		
Contact Hours/	Contact Hours/Week: 3L + 1T Course Credits: 0		
Course Object	tives		
 To under 	stand and remember algorithms and its analysis procedure.		
To introd	uce various techniques for representation of the data in the real world.		
To devel	op application using data structure algorithms.		
Unit Number	Course Content	Contact Hours	
UNIT-01	Introduction: Data types, data structures, abstract data types, the running time of a program, the running time and storage cost of algorithms, complexity, asymptotic complexity, big O notation, obtaining the complexity of an algorithm. Development of Algorithms: Notations and Analysis.	06L	
UNIT-02	Linear Data Structures and Linked Lists: Storage structures for arrays - sparse matrices - structures and arrays of structures. Stacks and Queues: Representations, implementations and applications, Singly linked lists, Linked stacks and queues, operations on Polynomials, Doubly Linked Lists, Circularly Linked Lists, Operations on linked lists- Insertion, deletion and traversal, dynamic storage management – Garbage collection and compaction.	09L	
UNIT-03	Sorting and Searching Techniques: Bubble sorting, Insertion sort, Selection sort, Shell sort, Merge sort, Heap and Heap sort, Quick sort, Radix sort and Bucket sort, Sequential searching, Binary Searching	07L	
UNIT-04	Trees: Basic terminology, General Trees, Binary Trees, Tree Traversing: in-order, pre-order and post- order traversal, building a binary search tree, Operations on Binary Trees - Expression Manipulations - Symbol Table construction, Height Balanced Trees(AVL), B-trees, B+ -trees.	07L	
UNIT-05	Graphs: Basic definitions, representations of directed and undirected graphs, the single-source shortest path problem, the all-pair shortest path problem, traversals of directed and undirected graphs, directed acyclic graphs, strong components, minimum cost spanning tress, articulation points and biconnected components, graph matching.	07L	
Course Outco	mes		
Upon successful completion of the course, the students will be able to CO1: Assess how the choice of data structures and algorithm design methods impacts the performance of programs. CO2: Choose the appropriate data structure and algorithm design method for a specified application. CO3: Solve problems using data structures such as linear lists, stacks, queues, binary trees, and graphs CO4: Solve problems using algorithm design methods.			
BOOKS and References			
 An Introduction to Algorithms by T.H. Connen, C. E. Leiserson, R. L. Rivest, C. Stein, With Press. An Introduction to Data Structures with applications by .J.P. Tremblay, P.G. Sorenson, Tata McGraw Hill. Data structures, Algorithms and Applications in C++ by by S. Sahni, Tata McGraw Hill. Data Structures using C by Y. Langsam, M. J. Augenstein, A. M. Tenenbaum, Pearson Education. Data Structures and Algorithmic Puzzles by N. Karumanchi, CareerMonk Publications. Data Structures and Algorithms by A.V. Aho, J.D. Ullman, J.E. Hopcroft, Pearson. Data Structures – A Pseudo code Approach with C by R. F. Gilberg, B. A. Forouzan, Thomson Brooks / COLE. 			

Course Name:	Operating System		
Course Code: MA-224			
Course Type: Core			
Contact Hours/	Contact Hours/Week: 3L + 1T Course Credits: 04		
Course Object	ives		
 To understa 	and the main components of an OS & their functions and to understand the concepts and imple	ementation Memory	
managemer	nt policies and virtual memory.		
 I o understa 	and the working of an OS as a resource manager, file system manager, process manager, memor	ry manager and I/O	
manager an	a methods used to implement the different parts of US.		
I o study the	e need for special purpose operating system with the advent of new emerging technologies.	Lestures	
	Course Content	Lectures	
UNIT-01	Evolution of Operating Systems: Evolution of operating systems, Types of operating systems. The	UOL	
	process concept, system programmer's view of processes, operating systems views of processes,		
	CPII Scheduling: Scheduling concents scheduling algorithms algorithm evaluation multiple		
	processor scheduling real time scheduling		
UNIT-02	Concurrent Programming and Deadlocks: Critical regions. Conditional critical regions. Monitors	081	
01111 02	Interprocess communication. Messages. Pipes, Semaphores, Modularization, Synchronization,	~~_	
	Concurrent languages. Deadlocks: Characterization. Prevention. Avoidance. Detection and Recovery.		
	Combined approach to Deadlock Handling, precedence graphs.		
UNIT-03	Memory Management: Memory Management, Contiguous allocation, static-swapping, overlays,	10L	
dynamic partitioned memory allocation, demand paging, page replacement, segmentation.			
	contiguous allocation, paging, Hardware support, Virtual Memory.		
UNIT-04	File Systems: A Simple file system, General model of a file system, Symbolic file system,	04L	
Access control verification, Logical file system, Physical file system, Allocation strategy module,			
	Device strategy module, I/O initiators, Device handlers, Disk scheduling.		
UNIT-05	Networks, Security and Design Principles: Network operating system, distributed operating	08L	
	system, external security, operational security, password protection, access control, security		
	kernels, hardware security, layered approach, design principle.		
Course Outcor	nes		
Upon successfu	I completion of the course, the students will be able to		
CO1: Describe	e the important computer system resources and the role of operating system in their manage	ement policies and	
algorithr	ns and understand the process management policies and scheduling of processes by CPU		
CO2: Evaluate	a the requirement for process synchronization and coordination handled by operating system	t toobpologica, and	
CO3: Identify use and evaluate the storage management policies with respect to different storage management technologies and			
loenting the need to create the special purpose operating system.			
1 Operating System Concents by L.L. Peterson and A. Silberchatz, Addison Wesley			
2 An Introduction to Operating System by H. M. Dietel, Addison Wesley.			
3. Modern Operating system by A.S. Tanenbaum. Prentice Hall of India.			
4. Operating Systems - A Design Oriented Approach by C. Crowley. Irwin Publishing			
5. Operating systems by W. Stallings, Prentice Hall of India.			
6. The design of the Unix operating systems by M.J. Back, Prentice Hall of India.			
7. Operating Systems Principles by Silberschatz, Galvin, Gagne, Wiley: Seventh edition.			

Course Name: Data Structure Lab Course Code: MA-225

Contact Hours/Week: 2P

Course Objectives

- To provide skills for designing flowcharts and writing algorithms.
- To provide skills for writing C programs.
- To enable the students to understand about writing algorithms and step by step approach in solving problems with the help of fundamental data structures.

List of Experiments

- 1. Sorting Algorithms-Non-Recursive.
- 2. Sorting Algorithms-Recursive.
- 3. Searching Algorithm.
- 4. Implementation of Stack using Array.
- 5. Implementation of Queue using Array.
- 6. Implementation of Circular Queue using Array.
- 7. Implementation of Stack using Linked List.
- 8. Implementation of Queue using Linked List.
- 9. Implementation of Circular Queue using Linked List.
- 10. Implementation of Tree Structures, Binary Tree, Tree Traversal, Binary Search Tree, Insertion and Deletion in BST.
- 11. Graph Implementation, BFS, DFS, Minimum cost spanning tree, shortest path algorithm.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Identify and abstract the programming task involved for a given problem.
- CO2: Ability to describe stack, queue and linked list operation.
- CO3: Ability to analyze algorithms and algorithm correctness.

Course Name: Statistical Methods Lab Course Code: MA-226

Contact Hours/Week: 2P

Course Objectives

- To provide skills for designing worksheet in SPSS and data import and export from different formats
- To provide skills to write/create the hypothesis by observing the data
- To enable the students to work on SPSS and data analysis

List of Experiments

- 1. Introduction to SPSS and setting Up a Data File
- 2. SPSS Analysis: Windows Method versus Syntax Method and Missing data
- 3. Programs to Methods of MULT RESPONSE Procedures, Example of the Multiple-Dichotomy Method, Example of the Multiple-Response Method, Cross-Tabulations
- 4. Testing Statistical Significance between Two Correlation Coefficients Obtained from Two Samples
- 5. Spearman Rank Order Correlation Coefficient
- 6. Prediction Equation of Linear Regression and Multiple regression Analysis
- 7. Chi-Square Test for Single Variable Experiments and test of Independence between Two Variables
- 8. t Test for Independent Groups
- 9. Paired-Samples t Test
- 10. Analysis of Variance One-way and Two -way
- 11. Post Hoc Comparisons of ANOVA
- 12. Factorial Analysis of Variance

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Identify and abstract the data type and suitable statistical tool for the data.
- CO2: Design the data sheet as per the SPSS format so that student can run the experiment.
- CO3: Do the statistical analysis using SPSS.

Course Name: **Operating System Lab** Course Code: MA-227

Contact Hours/Week: 2P

Course Objectives

- To To provide students' knowledge of memory management and deadlock handling algorithms.
- To provide skills for writing programs.
- To learn different types of operating systems along with concept of file systems.

List of Experiments

4.

6.

- 1. Study of hardware and software requirements of different operating systems (UNIX,LINUX,WINDOWS XP, WINDOWS7/8
- 2. Execute various UNIX system calls for
 - Process management i.
 - ii. File management
 - Input/output Systems calls iii.
- Implement CPU Scheduling Policies: 3.
 - i. SJF
 - Priority
 - ii. FCFS iii.
 - Multi-level Queue iv.
 - Implement file storage allocation technique:
 - i. Contiguous(using array)
 - ii. Linked -list(using linked-list)
 - iii. Indirect allocation (indexing)
- Implementation of contiguous allocation techniques: 5.
 - i.) Worst-Fit ii) Best-Fit iii) First-Fit
 - Calculation of external and internal fragmentation
 - Free space list of blocks from system i.
 - List process file from the system ii.
- Implementation of compaction for the continually changing memory layout and calculate total movement of data 7.
- Implementation of resource allocation graph RAG) 8.
- Implementation of Banker's algorithm 9.
- 10. Conversion of resource allocation graph (RAG) to wait for graph (WFG) for each type of method used for storing graph.
- 11. Implement the solution for Bounded Buffer (producer-consumer)problem using inter process communication techniques-Semaphores
- 12. Implement the solutions for Readers-Writers problem using inter process communication technique -Semaphore
- Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

- Upon successful completion of the course, the students will be able to
- Make students able to implement CPU scheduling algorithms and Bankers algorithm used for deadlock CO1: avoidance and prevention.
- CO2: Implement various algorithms required for management, scheduling, allocation and communication used in operating system.
- CO3: Implement page replacement and memory management algorithms.

Course Name:	Operation Research	
Course Code:	MA-311	
Course Type:	Core Course	
Contact Hours/	Neek: 3L + 1T	Course Credits: 04
Course Object	ives	
To provide	quantitative insight and understanding of fundamental methods of linear programming problems.	
To demons	strate the powerful capabilities of optimization theory to enable reducing costs, improving efficience	y, optimal usage of
resources	and providing benefits in many other key dimensions in engineering / industry / managerial	/ decision making
problems.		
To have fla	avor of both sound theoretical foundation of various methods and their actual implementations in pro	blems solving.
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Hyperplane and hyperspheres, Convex sets and their properties, Convex functions, Linear Programming Problems; Formulation through examples, Basic feasible and optimal solutions, Extreme points, Graphical Method, Simplex Method, Big-M Method, Degeneracy, Duality and Dual LPP and its properties, Dual simplex Algorithm and sensitivity analysis.	06L
UNIT-02	Transportation Problem : mathematical formulation, basic feasible solution, North-West Corner Method, Least Cost Method, Vogel's approximation Method, Optimal solution by U-V Method, Stepping Stone Method, Degeneracy in Transportation problem. Assignment Problem: mathematical formulation, solution by Hungarian Method, unbalanced problem, Traveling Salesman problem and its solution.	08L
UNIT-03	UNIT-03 Goal Programming Problem (GPP): Mathematical formulation, Graphical goal attainment and 06L	
UNIT-04	Game Theory: Two-Person Zero sum games. The Maximin-minimax principle, pure and mixed	08L
strategies, graphical solution, Dominance property, General solution of mxn rectangular games, Linear programming of GP.		
UNIT-05	UNIT-05 Network Analysis: PERT: Background, development, networking, estimating activity time, 08L Determination of earliest expected and allowable times, determination of critical path, PERT cost, scheduling of a project. CPM method, Applications of these methods	
Course Outcor	nes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Under	rstand the characteristics of different types of decision-making environments and the appropria	te decision making
appro	aches and tools to be used in each type.	
CO2: Build	and solve Transportation and Assignment Models.	
CO3: Desig	n new simple models, like: OPIVI, PERT to Improve decision –making and develop critical thinking a	nd objective
analysis of decision problems.		
1 Introduction	erences n to Operations Research by F.S. Hillier and G.J. Libermann, McGraw Hill	
2 Onerations Research by K. Swarup, P.K. Gunta and Man Mohan, Sultan Chand and Sons		
3. Linear Programming by V. Chyatal, W.H. Freeman publishers.		
4. Operation Research by S.D. Sharma, Kedar Nath & Co.		
5. Mathematical Programming: Theory and Methods by S.M. Sinha, Elsevier Publications.		
6. Linear programming by G. Hadley, Narosa Publishing House.		
7. Operation Research: An Introduction by H. A. Taha, Prentice Hall of India.		
Operations	Research by V.K. Kapoor, Sultan Chand & Sons.	

Course Name:	Number Theory and Abstract Algebra		
Course Name.	MA-312		
Course Coue.	MA-512 Coro		
Contact Hours	Course Type. Core		
	Contact Hours/vveek: 3L + 11 Course Credits: 04		
Course Object	ives 		
 To impart ki 	nowledge about the Euclidean algorithm, residue, congruence inversion formula, recurrence function	n.	
 I o enable ti 	he students to understand the factors that causes the cryptography.		
 To introduce algorithms 	e the concepts of group, ring, ideal and factorization of polynomial ring which have vital application:	s in system security	
Unit Number	Course Content	Lectures	
UNIT-01	Number Theory and Congruences: Basic definition and properties of number theory, solutions	08L	
	of congruences, theorems of Fermat, Euler & Wilson, linear congruences and Chinese		
	remainder theorem, quadratic congruences		
UNIT-02	Arithmetical Functions: Examples with some properties and their rate of growth, continued	08L	
	fractions and their connections with Diophantine approximations, applications to linear and Pell's		
	equations, binary guadratic form		
UNIT-03	Introduction to Abstract Algebra: Groups, cyclic groups, permutation groups and applications,	08L	
Subgroups, normal subgroups, quotient Groups class equations, Sylow theorems and applications.			
UNIT-04	Rings: Subring, Ideals, prime and maximal ideals, quotient rings, Principal Ideal Domains and	08L	
	Unique Factorizations Domains, Euclidean Domains and factorization of polynomial rings		
UNIT -05	Fields: Finite field, subfield, extension field, splitting fields and introduction to Galois theory.	04L	
Course Outcor	nes		
Upon successfu	Il completion of the course, the students will be able to		
CO1: Identify divisibility, residue, congruence, remainder, reciprocity, primality, factorization.			
CO2: Apply principles of Number Theory in cryptography.			
CO3: Group theory and its applications in security systems.			
CO4: Factorization of polynomials and its application in solving some of the most important problems of 18 th and 19 th centuries.			
Books and References:			
1. A Course in Number Theory and Cryptography by N. Koblitz, Springer Verlag.			
2. An introduction to the theory of numbers by C.H. bardy, E.M. Wright, Oxford University Proce			

2. An introduction to the theory of numbers by G.H. hardy, E.M. Wright, Oxford University Press.

An Introduction to the Theory of Numbers by I. Niven, H.S. Zucketman, H.L. Montgomery, John Wiley and Sons.
 Contemporary Abstract Algebra by J.A. Gallian, Narosa Publishing House.

5. Topics in Algebra by I.N. Herstein, Wiley India Pvt. Ltd.

Course Name:	Data Base Management Systems	
Course Code: MA-313		
Course Type: Core		
Contact Hours/Week: 3L + 1T Course Credits: 04		
Course Object	ives	
To introdu like embed	ce the concepts of basic SQL as a universal Database language and to enhance knowledge to ac ded SQL, procedures connectivity.	Ivanced SQL topics
To demon	strate the principles behind systematic database design approaches by covering conceptual de	sign, logical design
through no	prmalization.	
To provide	e an overview of physical design of a database system, by discussing Database indexing tech	niques and storage
techniques	S.	
Unit Number	Course Content	Lectures
UNIT-01	Basic Concepts: Introduction to File and Database systems- Database system structure – concepts and architecture, date models, schemas & instances, DBMS architecture & data independence, database languages & interfaces, Data Model, ER model.	06L
UNIT-02	Relational Models: SQL – Data definition- Queries in SQL-relational model concepts, relational model constraints, relational algebra, SQL- a relational database language: date definition in SQL, view and queries in SQL, specifying constraints and indexes in SQL; relational database management systems-Updates, Views, Integrity and Security, Relational Database design, Functional dependences and Normalization for Relational Databases, normal forms based on primary keys, (1NF, 2NF, 3NF & BCNF), lossless join and dependency preserving decomposition	10L
UNIT-03 Data Storage and Query Processing: Record storage and Primary file organization- Secondary storage Devices, Operations on Files, Heap File, Sorted Files, Hashing Techniques, Index Structure for files, Different types of Indexes- B-Tree - B+Tree, Query Processing.		08L
UNIT-04 Transaction Management: Transaction Processing, Need for Concurrency control, Desirable properties of Transaction, Schedule and Recoverability, Serializability and Schedules; Concurrency Control, Types of Locks, Two Phases locking, Deadlock, Time stamp based concurrency control, Recovery Techniques, Concepts- Immediate Update- Deferred Update, Shadow Paging		04L
UNIT-05	Current Trends: Introduction to Distributed and parallel databases, Deductive Databases, Multimedia Databases, Real-Time Databases.	08L
Course Outco	mes	
Upon successful completion of the course, the students will be able to CO1: Explain the features of database management systems and Relational database. CO2: Create and populate a RDBMS for a real life application, with constraints and keys, using SQL and retrieve any type of information from a data base by formulating complex queries in SQL		
CO3: Analyze the existing design of a database schema and apply concepts of normalization to design an optimal databaseandf build indexing mechanisms for efficient retrieval of information from a database.		
Books and References		
1. Databas	se System Concepts by A. Silberschatz, H.F. Korth , S. Sudarshan, Tata McGraw-Hill.	
2. Fundam	2. Fundamental Database Systems by R. Elmasri, S. B. Navathe, Pearson Education.	
3. An intro	3. An introduction to database concepts by B. Desai, Galgotia publications.	
4. An intro	4. An introduction to database systems by C.J. Date, Addison Wesley.	
5. Fundamentals of database systems by E. Ramez, N. Samkanth, Pearson Education.		
6. Principa	 b. Principals of database systems by J.D. Ullman, Galgotia publications. 7. Database System Implementation by H. Careia, Moline, J. D. Illman, and J. Widem, Descreen Education 	
CO2: Creat inform CO3: Analy build Books and Re 1. Databas 2. Fundam 3. An intro 4. An intro 5. Fundam 6. Principa 7. Databas	ie and populate a RDBMS for a real life application, with constraints and keys, using SQL and re- nation from a data base by formulating complex queries in SQL. Ize the existing design of a database schema and apply concepts of normalization to design an op- indexing mechanisms for efficient retrieval of information from a database. ferences See System Concepts by A. Silberschatz, H.F. Korth , S. Sudarshan, Tata McGraw-Hill. Inental Database Systems by R. Elmasri , S. B. Navathe, Pearson Education. duction to database concepts by B. Desai, Galgotia publications. duction to database systems by C.J. Date, Addison Wesley. Inentals of database systems by E. Ramez, N. Samkanth, Pearson Education. Is of database systems by J.D. Ullman, Galgotia publications. See System Implementation by H. Garcia–Molina, J. D.Ullman and J. Widom, Pearson Education.	retrieve any type of

Course Name: Programming in Python			
Course Code: MA-314			
Course Type: Core			
Contact Hours/Week: 3L Course Credits: 03			
Course Object	Course Objectives		
Understand	now to write algorithms for the concepts on computational problems.		
Know the ba	asics of python programming such as tokens, data types etc.		
Get idea on	the control statements, now to use functions and the string handling mechanisms in python langua	ge.	
Recognize	with the concepts of tupies and dictionaries in python language.	Looturoo	
	Course Content Fundamental Algorithms: Programs and algorithms: Problem Solving aspect top down	noi	
UNIT-UT	design implementation of algorithms program verification and efficiency of algorithms and	09L	
	analysis of algorithms. Exchanging the values of two variables, counting, summation, factorial.		
	sine function computation, generation of Fibonacci sequence, reversing the digits/strings, base		
	conversion.		
UNIT-02	Basics of Python Programming: Introduction to Python, Python character set, Tokens, Core	07L	
	data types, variables, Assignment of values to variables, Writing simple programs in Python.		
	Operators and Expressions: Arithmetic operators, Operator precedence and associativity,		
	Bitwise operators and Boolean operators.		
UNIT-03	Control Flow, Functions and Strings: Decision Statements: if statement, if-else statement,	07L	
	nested if statement, multi-way if-elseif-else statement; Loop Statements: while loop, range()		
	tunction, for loop, nested loops, break and continue statements; Functions: Syntax and basics		
	or a function, parameters and arguments in a function, return statement, recursive functions, Lambda function; String operations		
	Lambda function, Strings. Dasic Fytion functions for string, String operators, String operations	071	
	strings Lists with functions. Searching and sorting in lists. Tuples : Creating tuples inbuilt	UL .	
	functions for tuples. Lists and tuples. Dictionaries: Basics of dictionaries. Creating a dictionary.		
	Formatting dictionaries, Methods of dictionary class		
UNIT-05	File Handling, Modules and Packages: File Handling: Introduction, Working with text files;	06 L	
	Modules: Definition, Creating a module, Standards modules of Python; Packages: Definition,		
	Importing * from packages, Packages in multiple directories		
Course Outcor	nes		
Upon successfu	Il completion of the course, the students will be able to		
CO1: Write algo	britings for computational problems.		
CO2: Work with	Dasic programs in python.		
CO4: Execute r	programs on creation of lists, tuples and dictionaries using national language		
CO5. Implement file headling mechanisms, modules and peakages of python language.			
Books and Poteroneos			
1. Think Pyth	on: How to Think Like a Computer Scientist- Allen B. Downey		
2. Python Pro	paramming – An Introduction to computer science. John Zelle, JimLeisv.		
3. Programming Python, Mark Lutz, O'Reilly, 3rd Edition, 2006.			
4. Core Python Programming, Wesley J Chun, PH, 2nd Edition.			
5. Python Programming: A Compatible Guide for Beginners to Master and Become an Expert in python programming Language,			
Brain Dra	Brain Draper, Create Space Independent Publishing Platform, 2016.		

Course Name: Data Base Management Systems Lab	
Course Code: MA-315	
Contact Hours/Week: 2P Course Credits:	: 01
Course Objectives	
To present an introduction to database management systems using programming.	
To provide skills for writing programs.	
Familiar with basic database storage structures and access techniques.	
List of Experiments	
1. Installing oracle/ MYSQL	
2. Creating Entity-Relationship Diagram using case tools.	
3. Writing SQL statements Using ORACLE /MYSQL:	
a) Writing basic SQL SELECT statements.	
b) Restricting and sorting data.	
c) Displaying data from multiple tables.	
d) Aggregating data using group function.	
e) Manipulating data.	
f) Creating and managing tables.	
4. Normalization	
5. Creating cursor	
6. Creating procedure and functions	
7. Creating packages and triggers	
8. Design and implementation of payroll processing system	
9. Design and implementation of Library Information System	
10. Design and implementation of Student Information System	
11. Automatic Backup of Files and Recovery of Files ii. List process file from the system	
Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based of generic list.	n above
Course Outcomes	
Upon successful completion of the course, the students will be able to	
CO1: Describe the fundamental elements of relational database management systems.	

- Design ER-models to represent simple database application scenarios. Improve the database design by normalization.
- CO2: CO3:

Course Name: Programming in Python Lab Course Code: MA-316

Contact Hours/Week: 2P

Course Objectives

- To understand and apply the basic principles of programming.
- To identify/characterize/define a problem.
- To design a program to solve the problem.
- To read more Python code.

List of Experiments

- 1. To read two numbers and perform an arithmetic operation based on the option chosen by the user.
- 2. Write a NumPy program to create a 2D array with 1 on the border and 0 inside.
- 3. Write a NumPy program to get the number of nonzero elements in an array.
- 4. Write a NumPy program to compute the multiplication of two given matrixes.
- 5. Write a NumPy program compute the inverse of a given matrix.
- 6. Write a program to calculate factorial of a given number and store result into variable.
- 7. Write a function that tests if a number is prime. Test it by writing out all prime numbers less than 50.
- 8. Generate two array of same length and plot on x axis and y-axis.
- 9. Write a NumPy program to get the element-wise remainder of an array of division.
- 10. Write a program to generate a multiplication table for a given number.
- 11. Write a program to find the distance between two points, area of a circle.
- 12. Write a program to find the factorial of a number using recursion. And also find the GCD of two numbers using recursion.
- 13. Consider the string str = 'Hello Word'. Write statements in Python to implement the following
 - i. To display the last four characters.
 - ii. To display the substring starting from index 2 and ending at index 6.
 - iii. To check whether string has alphanumeric characters or not.
 - iv. To trim the last four characters from the string.
 - v. To trim the first four characters from the string.
 - vi. To display the starting index for the substring 'He'.
 - vii. To change the case of the given string.
 - viii. To check if the string is in title case.
 - ix. To replace all the occurrences of letter 'o' in the string with '*'.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Write python basic programs using conditional and looping structures.

CO2: Execute programs in python for string handling, functions, create modules and work with packages.

Cour	rse Name: Statistical Software Lab		
Cour	rse Code: MA-317		
Cont	Contact Hours/Week: 2P Course Credits: 01		
Cou	rse Objectives		
• 1	To provide skills to use the Statistical Software.		
• 1	To provide skills for analyzing data with appropriate techniques.		
• 1	Fo enable the students to visualize data.		
List	of Experiments		
1.	An Overview of Statistical Software: Mouse and keyboard processing, frequently-used dialog boxes, Editing output, Printing results, Creating and editing a data file.		
2.	Managing Data: Listing cases, replacing missing values, computing new variables, recording variables, exploring data, selecting		
	cases, sorting cases, merging files.		
3.	Graphs: Creating and editing graphs and charts.		
4.	Frequencies: Frequencies, bar charts, histograms, percentiles.		
5.	Descriptive Statistics I: measures of central tendency, variability, deviation from normality, size and stability.		
6.	Descriptive Statistics II: Cross Tabulation and chi-square analyses, The means procedure.		
7.	Bivariate Correlation: Bivariate Correlation,		
8.	The T-test procedure: Independent –samples, paired samples, and one sample tests.		
9.	The one way ANOVA procedure: One way analysis of variance.		
10.	General Linear model: Two-way analysis of variance.		
11.	General Linear model: Simple Linear Regression.		
12.	General Linear model: Multiple Linear Regression.		
Cou	rse Outcomes		
Upor	n successful completion of the course, the students will be able to		
C01	: Import, review, manipulate and summarize data-sets with statistical software.		
CO2	: Explore data-sets to create testable hypotheses and identify appropriate statistical tests.		

- CO3: Perform appropriate statistical tests using statistical software. CO4: Create and edit visualizations with statistical software.

Course Name:	Real & Complex Analysis
Course Code:	MA-321
Course Type:	Core
Contact Hours/M	leek: 31 + 1T

Course Credits: 04

Course Objectives

• To impart knowledge about the Riemann integration, Improper integral, Metric spaces, Complex integration.

To introduce the fundamental concepts relevant to Real and Complex Analysis.

To enable the students to understand the factors that causes the integrability and convergence. •

II. MALE		I 1
Unit Number	Course Content	Lectures
UNIT-01	Riemann Integration: Riemann Integration, Partition and Riemann sums, necessary and	06L
	sufficient conditions for Riemann integrability of a function, first and second mean value	
	theorems of integral calculus, fundamental theorem of integral calculus.	
UNIT-02	Improper Integrals: Improper integrals of first and second type, Beta function, Gamma function,	07L
	their properties, relation between Beta and Gamma function, Convergence of improper integrals,	
	comparison test, µ-test, Abel's test, Dirichlet's test.	
UNIT-03	Metric Spaces: Definition and examples, open, closed and bounded sets, Interior, closure and	12L
	boundary, convergence and completeness, continuity and uniform continuity, connectedness,	
	compactness and Seperability, Heine-Borel theorem.	
UNIT-04	Preliminaries to Complex Analysis: Basic properties: convergence, compactness,	04L
	connectedness, Power series of complex valued function, radius of convergence.	
UNIT-05	Complex Functions: Poisson's integral formula for a circle, Cauchy's inequality, Fundamental	07L
	theorem of integral calculus for complex valued function. Fundamental theorem of algebra,	
	argument principle, Rouche's theorem.	
Course Outcor	nes	
Upon successfu	I completion of the course, the students will be able to	

CO1: Identify the factors that cause integrability and convergence. CO2: Describe the basic concepts of Real and Complex Analysis.

CO3: Apply principles of Real and Complex Analysis to test the integrability and convergence.

CO4: Assess the benefit of Real and Complex analysis.

Books and References

1. Advanced Engineering Mathematics: by Erwin Kreyszig, John Wiley and Sons.

2. Advanced Engineering Mathematics, R. K. Jain & S. R. K Iyengar, Narosa Pub. House.

3. Complex Analysis for Mathematics and Engineering by J.H. Mathews and R.W. Howell, Narosa Publishing House.

4. Complex Variables and Applications by J.W. Brown and R.V. Churchill, McGraw Hill.

5. Mathematical Analysis by T. M. Apostol,, Addison-Wesley Publishing Company.

Mathematical Analysis by S.C. Malik & Savita Arora,, New Age International (P) Ltd. 6.

Course Name:	Advanced Differential Equations and Applications		
Course Code:	MA-322		
Course Type:	Core		
Contact Hours/	Neek: 3L + 1T	Course Credits: 04	
Course Object	ives		
To study the	e linear and nonlinear ordinary differential equations and their solutions.		
To study the	e linear and nonlinear partial differential equations and their solutions.		
To understa	ind the method of solution for higher order differential equations.		
Unit Number	Course Content	Lectures	
UNIT-01	First Order Ordinary Differential Equations: Revisiting basic concepts, Some models arising	08L	
	in ordinary differential equations, Existence and uniqueness of solution: Picard's Theorem,		
	Solutions to system of linear differential equations, eigenvalue-eigenvector method of finding		
	solutions, Fundamental matrix, Nonhomogeneous equations.		
UNIT-02	Second Order Ordinary Differential Equations: Second order differential equations with	08L	
	constant and variable coefficients, Wronskian, reduction of order method of finding solutions,		
	Series solutions of ordinary differential equations, regular point and singular point, Frobenius		
	method and some special functions.	001	
UNIT-03	First Order Partial Differential Equations: Well-posed problems and classical solutions,	08L	
	Transport equation, Pramian Differential equations, Cauchy's Problem for First -order Equations,		
	Characteristics, Cauchy's Method of Characteristics, Compatible Systems of First -order		
	Equations, Jacobi's Method.	001	
0111-04	organized of the second second their electrical equations. Second order partial differential equation	UOL	
	to canonical form: Cauchy, Dirichlet and Neumann problems: fundamental solutions of Lanlace		
	equations. Heat equation. Dubamel's principle for inhomogeneous problems.		
LINIT-05	Some Higher Dimensional Partial Differential Equations: Solutions of Heat Wave and	041	
	I anlace equations in two or higher dimensions using Lanlace and Fourier transforms	VHL	
Course Outcor	nes		
Upon successfu	I completion of the course, the students will be able to		
CO1: Unders	tand Important Concepts of Ordinary Differential Equations in Detail.		
CO2: Classif	y PDEs and transform into canonical form.		
CO3: Apply a	CO3: Apply analytical methods to solve PDE's and physically interpret the solutions.		
Books and References			
1. Differential Equations and their Applications by Martin Braun, Springer Verlag Berlin.			
2. Ordinary Differential Equations by B Rai and D P Choudhary and H I Freedman, Narosa Publication.			
3. Partial Differential Equations by L C Evans, American Mathematical Society.			
4. Elements of	Elements of Partial Differential equations by I. N Seneddon, Dover Publications.		
5. Partial Diffe	rential Equations for Engineers and Scientists by J. N. Sharma and K. Singh,, Narosa Publishing H	ouse.	

Course Name:	Time Series Analysis & Forecasting	
Course Code	MA-323	
Course Type:	Core	
Contact Hours/		Course Credits: 04
Course Object	ives	
 To impart k 	nowledge about the areas of time series statistics	
 To apply the 	e concents of time series statistics to real data sets	
 To apply iff To enable t 	he students to assimilate data annlied to real scientific and interesting problems	
	Course Content	Lectures
	Introduction: Time-series as discrete parameter stochastic process auto covariance and	<u> </u>
	autocorrelation functions and their properties.	04L
UNIT-02	Exploratory Time Series Analysis: Components of time series, Messurements of trend, Measurement of seasonal fluctuation, Mesurement of cyclic movement, tests for trend and seasonality, exponential and moving average smoothing. Holt and Winters smoothing, forecasting based on smoothing.	08L
UNIT-03	Models for Stationary Time Series: (1) moving average (MA), (2) auto regressive (AR), (3) ARMA and (4) AR integrated MA (ARIMA) models. Box-Jenkins models, choice of AR and MA periods.	06L
UNIT-04	Modeling Seasonal Time Series: Seasonal ARIMA models, estimation and forecasting, Fitting ARIMA models with Box-Jenkins procedure, Identification, Estimation, Verification, Test for white noise, Forecasting with ARMA models. Spectral analysis: Spectral analysis of weakly stationary process, peridogram and correlogram analyses, computations based on Fourier transform.	12L
UNIT-05	Multivariate Time Series: Stationary multivariate time series, Cross-covariance and Cross- Correlation Matrices, Covariance Stationary, Vector white nose process, Moving average representation of a stationary vector process	06L
Course Outco	mes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Unde	rstand and analyze the theoretical & practical aspects of time series data.	
CO2: Unde	rstand the components of time series and measure these components.	
CO3: Identify an appropriate time series model to fit the empirical data and use it for forecasting.		
CO4: Unde	rstand the genesis of the multivariate time series analysis.	
 Books and References Time Series Analysis: Forecasting and Control by G. Box and Jenkins, Palgrave Macmillan. Introduction to Time Series and Forecasting by P.J. Brockwell and R.A. Davis, Springer. Time Series Analysis by J. D. Hamilton, Princeton University Press. 		

3. Time Series Analysis by J. D. Hamilton, Princeton University Press.

Course	e Name:	Soft Computing	
Course	e Code:	MA-324	
Course	e Type:	Core	
Contac	ct Hours/V	Veek: 3L	Course Credits: 03
Cours	e Objecti	ves	
• To	oundersta	nd the fundamental theory and concept of soft computing methods.	
• To	introduce	e concept of Fuzzy logic, various fuzzy systems and their functions.	
• To	oundersta	nd basics of an evolutionary computing paradigm known as genetic algorithms.	
• To	introduce	e concept of artificial neural networks and its implementation for engineering applications.	
• To	develop s	skills to gain basic understanding of neuro-fuzzy modeling and applications.	
Unit N	Number	Course Content	Lectures
UN	IIT-01	Introduction to Soft Computing: Concept of computing systems, "Soft" computing versus "Hard" computing, Characteristics of Soft computing, Some applications of Soft computing techniques.	06L
UN	IIT-02	Fuzzy Logic: Introduction to Fuzzy Logic, Classical and Fuzzy Sets: Overview of Classical Sets, Membership Function, Fuzzy rule generation. Operations on Fuzzy Sets: Compliment, Intersections, Unions, Combinations of Operations, Aggregation Operations. Fuzzy Arithmetic, Fuzzy Logic: Classical Logic, Multivalued Logics, Fuzzy Propositions, Fuzzy Qualifiers, Linguistic Hedges, Fuzzy Inference, Defuzzification techniques, Fuzzy logic controller design, some applications of fuzzy logic.	09L
UN	IIT-03	Genetic Algorithms: Concept of "Genetics" and "Evolution" and it's applications to probabilistic search techniques, Basic GA framework and different GA architectures, GA operators: Encoding, Crossover, Selection, Mutation etc., Single objective Optimization problem using GA.	08L
UN	IIT-04	Artificial Neural Networks: Overview of biological Neuro-system, Mathematical Models of Neurons, ANN architecture, Learning rules, Learning Paradigms-Supervised, Unsupervised and reinforcement Learning, ANN training Algorithms- Training rules, Delta, Back Propagation Algorithm, Multilayer Perceptron Model, Hopfield Networks, Associative Memories, Applications of Artificial Neural Networks.	07L
UN	IIT-05	Neuro-fuzzy Modeling: Introduction of Neuro-Fuzzy Systems: Architecture of Neuro Fuzzy Networks, Neuro-fuzzy inference system, Rule base structure identification, Neuro fuzzy controls. Application of Neuro-fuzzy hybrid systems.	06L
Cours	e Outcon	nes	
Upon s	successfu	I completion of the course, the students will be able to	
CO1:	Under	stand the concepts of fuzzy logic and fuzziness involved in various systems.	
CO2:	Solve	single objective optimization problems using Genetic algorithm.	
CO3:	Analyz	ze various neural network architectures.	
CO4:	Use so	oft computing methods to solve various engineering application problems.	
Books	s and Ref	erences	
1.	Principles	or Soft Computing by S.N. Sivanandam, S. N. Deepa, John Wiley & Sons.	
2.	Neural Ne	etworks and Learning Machines by S. Haykin, Prentice Hall of India.	
3. 1		agonums in Search, Optimization and Machine Learning by D.E. Goldberg, Pearson.	
4. 5	4. I uzzy Lugic with Engineening Applications by 1.J. Ross, John Wiley & Julis.		
5. 6.	An Introdu	Job of Neural Neurons, Fuzzy systems and Knowledge Engineering by N.K. Kasabov, MIT Press. Jotion to Genetic Algorithms by M. Mitchell, MIT Press.	

6. An Introduction to Genetic Algorithms by M. Mitchell, MIT Press.

Course Name: Numerical Computation Lab
Course Code: MA-325
Contact Hours/Week: 2P Course Credits: 01
Course Objectives
 To impart knowledge to develop algorithm and C⁺⁺/ MATLAB codes for numerical methods.
To prepare students with the skill to create function files and call the same.
• To enable the students to handle problems numerically, which are difficult to be solved manually.
List of Experiments
1. To find the roots of non-linear equation using Bisection method
2. To find the roots of non-linear equation using Regular Falsi method
3. To find the roots of non-linear equation using Newton-Raphson method
4. To solve the system of linear equations using Gauss-Elimination method
5. To solve the system of linear equations using Jacobi iteration method
6. To solve the system of linear equations using Gauss-Seidal method
7. To Interpolate the dependent variable by Newton's interpolation formulae
8. To Interpolate the dependent variable by Gauss interpolation formulae
9. To integrate numerically using Trapezoidal rule
10. To integrate numerically using Simpson's rules
11. To integrate numerically using Romberg integration
12. To find numerical solution of ordinary differential equations by Euler's method
 To find numerical solution of ordinary differential equations by Runge- Kutta method
14. To find numerical solution of ordinary differential equations by Adam Bashforth predictor corrector method
Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.
Course Outcomes
Upon successful completion of the course, the students will be able to
CO1: Develop algorithms and consequently codes for various numerical methods.
CO2: Learn to create and call function files.
CO3: Learn to control error in numerical computations
CO4: Use their computational skills efficiently with desired level of accuracy.

Course Name:	Time Series Analysis Lab
Course Code:	MA-326

Contact Hours/Week: 2P

Course Objectives

- To provide skills to apply the time series methods to data.
- To provide skills for analyzing data with appropriate time series techniques.
- To enable the students to visualize time series data.

List of Experiments

- 1. Understanding Time Series Data: descriptive analysis, association techniques.
- 2. Time Series Decompositon.
- 3. Autocorreation Function (ACF) & Partial Autocorreation Function (ACF).
- 4. Tests for Trend and Seasonality.
- 5. Exponential smoothing and forecasting based on smoothing.
- 6. Moving average smoothing and forecasting.
- 7. Holt and Winter's Smooting and forecasting.
- 8. Application of Moving Average (MA) Time Series Models to data.
- 9. Application of Autoregrssive (AR) Time Series Models to data.
- 10. Application of Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving Average Time Series Models to data.
- 11. Application of Seasonal Autoregrssive Moving Average (SARMA) Time Series Models to data.
- 12. Spectral Analysis of Time Series Data.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Import, review, manipulate and summarize time series data-sets.
- CO2: Explore data-sets to create testable hypotheses and identify appropriate time series methods.
- CO3: Perform appropriate Time Series Models for Forecasting.
- CO4: Check the stationarity of time series in terms of its spectral density function.

Course Name:	Engineering Economics and Accountancy		
Course Code:	HS-404		
Course Type:	Core		
Contact Hours/	Neek: 3L	Course Credits: 03	
Course Object	ives		
 To impart k 	nowledge about the Economics and its applicability to the Engineers		
 To introduce 	e the fundamental concepts of economics		
 To enable t 	he students to understand the factors that causes the changes in economic conditions of the entrep	reneur	
Unit Number	Course Content	Lectures	
UNIT-01	Introduction to Engineering Economics: Definitions, Nature, Scope and application; Difference	06L	
	between Micro Economics and Macro Economics; Theory of Demand & Supply: Meaning,		
	Determinants, Law of Demand, Elasticity of demand, Demand Forecasting, Law of Supply,		
	Equilibrium between Demand & Supply.	001	
UNIT-02	Production and Lost: Production functions, isoquant, Least Lost combination, Laws of Returns	06L	
	to Scale. Economics and Diseconomies of Scale of production, Cost and Cost curves, Revenue		
	and Revenue curve, break even analysis.	051	
UNIT-03	cost, Overhead cost, Cost control, Criteria of project appraisal, Social cost benefit analysis	USL	
UNIT-04	Markets: Meaning, Types of Markets, Characteristics (Perfect Competition, Monopoly,	05L	
	Monopolistic Competition, Oligopoly) Price and Output Determination; Product Differentiation;		
	Selling Costs; Excess Capacity.		
UNIT-05	Money: Meaning, Functions, Types; Monetary Policy- Meaning, Objectives, Tools; Fiscal	04L	
	Policy:-Meaning, Objectives, Tools.		
	Banking: Meaning, Types, Functions, Central Bank: its Functions, concepts CRR, Bank Rate,		
	Repo Rate, Reverse Repo Rate, SLR.		
UNIT-06	Depreciation: Meaning of depreciation, causes, object of providing depreciation, factors	04L	
	affecting depreciation, Methods of Depreciation: Straight line method, Diminishing balance		
	method, Annuity method and Sinking Fund method		
UNIT-07	Financial Accounting: Double entry system (concept only), Rules of Double entry system,	06L	
	Journal(Sub-division of Journal), Ledger, Trial Balance Preparation of final accounts-Trading		
	Account. Profit and Loss account, Balance Sheet.		
Course Outcoi	nes		
Upon successi	ul completion of the course, the students will be able to		
	is the chanenges of the economy as entrepreneur/manufacturer as well as consumer		
CO2: Desci	not the economic system at the micro and macro level		
CO1: Apply	principles of economics and accounting in attaining economic efficiency		
Books and Ref			
1 Principles	of Micro Economics by William A. Mceachern and Simrit Kaur. Cengage Publication		
2 Manageria	I Economics by Craig Peterson and W Cris Lewis PHI Publication		
3. Modern Mi	croeconomics by A. Koutsoviannis. Macmillan.		
4. Manageria	Economics Theory and Applications by D. M.Mithani, Himalaya Publication House		
5. Fundamen	tal of Managerial Economics Mark Hirschey, South Western Educational Publishing.		
6. Engineerin	g Economics by E. Paul DeGarmo, Prentice Hall.		
7. Financial A	Accounting-A Managerial Perspective by R. Narayanaswamy, PHI.		
8. Introduction to Accounting by J.R. Edwards and Howard J Mellett, Sage Publication.			
9. Cost Acco	9. Cost Accounting by Jawahar Lal, Tata McGraw Hill.		
10. Project Planning Analysis, Selection, Implementation and Review by Prasanna Chandra, Tata McGraw Hill.			

Course Name:	Cryptography & Information Security	
Course Code:	MA-411	
Course Type:	Core	0 0 111 00
Contact Hours/	Week: 3L	Course Credits: 03
Course Object	IVES	
Io understa	and the fundamentals of cryptography and network security.	
	to secure a message over insecure channel by various means.	
Io understa	and various key distribution and management schemes.	
		Lectures
UNIT-01	theory.	04L
UNIT-02	Crypto Systems: Classical Cryptosystems, Cryptanalysis of Classical Cryptosystems, Shannon's Theories. Symmetric Key Ciphers, Modern Block Ciphers (DES and AES).	08L
UNIT-03	Cryptanalysis: Linear, Differential and other Cryptanalysis Techniques, Overview on S-Box Design Principles, Modes of operation of Block Ciphers, Stream Ciphers, Pseudorandom functions Asymmetric Key Ciphers: Construction and Cryptanalysis.	08L
UNIT-04	Primality Testing, Factoring Algorithms: The RSA Cryptosystem, Other attacks on RSA and Semantic Security of RSA, The Discrete Logarithm Problem (DLP) and the Diffie Hellman Key Exchange algorithm The ElGamal Encryption Algorithm Cryptanalysis of DLP, Hash functions: The Merkle Damgard Constructio Message Authentication Codes (MACs)	08L
UNIT-05	Signature Schemes : Elliptic curve based cryptography, Secret Sharing Schemes. A Tutorial on Network Protocols, Kerberos, Pretty Good Privacy (PGP), Secure Socket Layer (SSL), Intruders and Viruses, Firewalls.	08L
Course Outcor	nes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Analyze	e the vulnerabilities in any computing system and hence be able to design a security solution.	
CO2: Identify	the security issues in the network and resolve it.	
CO3: Implem	ent various networking protocols.	
Books and References		
1. Cryptography Theory and Practice by D. Stillson, Chapman & Hail/CKC.		
2. Cryptography a Network Security by D. A. Forouzan, Fata inc Graw Fill.		
4 Modern Cryptography Theory & Practice by W Mao Pearson Education		
5. An Introduction to Mathematical Cryptography by J. Hoffstein, J. Pipher, J.H. Silvermman, Springer		
6. Number Theory by S. G. Telang, Tata Mc Graw Hill.		
7. Protocol	Is for Authentication and Key Establishment by C. Boyd, A. Mathuria, Springer.	

Course Name:	Artificial Intelligence	
Course Code:	MA-421	
Course Type:	Core	
Contact Hours/	Neek: 3L	Course Credits: 03
Course Object	ives	
 To present a 	an overview of artificial intelligence (AI) principles and approaches.	
To develop	a basic understanding of the building blocks of AI as presented in terms of intelligent agents.	Search, knowledge
representati	ion, Knowledge acquisition.	
To impleme	nt knowledge of AI in some applications.	
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Introduction to AI, AI techniques, level of model, criteria for success, Turing test, Reactive, deliberative, goal-driven, utility-driven, and learning agents Artificial Intelligence programming techniques	06L
UNIT-02	Problem Solving: Problem as a space, search, production system, problem characteristics, production system characteristics, issues in the design of search programs, Solving problems by searching, Heuristic search techniques, constraint satisfaction problems, stochastic search methods.	08L
UNIT-03	Knowledge Representation and Reasoning: Ontologies, foundations of knowledge representation and reasoning, representing and reasoning about objects, relations, events, actions, time, and space; frame representation, semantic network, predicate logic, resolution, natural deduction, situation calculus, description logics, reasoning with defaults, reasoning about knowledge.	08L
UNIT-04	Representing and Reasoning with Uncertain Knowledge: Probability, connection to logic, independence, Bayes rule, Bayesian networks, probabilistic inference	08L
UNIT-05	Machine Learning and Knowledge Acquisition: Overview of different forms of learning, learning decision tress, Learning from memorization, Learning nearest neighbor, naive Bayes, Introduction to Natural language Processing.	06L
Course Outcor	nes	
Upon successfu	ul completion of the course, the students will be able to	
CO1: Design	a knowledge based system	
CO2: Analyze	e and formalize the problem as a state space, graph, design heuristics and select amongst diffe	rent search or game
based	techniques to solve them.	
CO3. Formul	ate and solve problems with uncertain mornation using bayesian approaches.	
Books and Pof	rences	
1. Artificial Inf	telligence: A Modern approach by S. Russell, P. Norvig, Prentice Hall of India	
2. Artificial Int	telligence by S. Kaushik. Cengage Learning India Pvt Ltd.	
3. Principles	of Artificial Intelligence by N.J. Nilsson, Narosa Publishing House.	
4. Artificial Int	telligence by E. Rich, K. Knight and S.B. Nair, Tata McGraw Hill International.	
5. Logic and F	Prolog Programming by S. Kaushik, New Age International Pvt. Ltd, 2012.	

Course Name:	Multivariate Statistical Analysis		
Course Code:	MA-422		
Course Type:	Core		
Contact Hours/	Neek: 3L	Course Credits: 03	
Course Object	ives		
 To impart ki 	nowledge about the multivariate statistical analysis, both theory and methods.		
To introduce	e the fundamental concepts relevant to multivariate distributions.		
To enable the second seco	he students to understand the classification problem in context of multivariate data.		
Unit Number	Course Content	Lectures	
UNIT-01	Multivariate Normal Distribution: Multivariate normal distribution and its properties. Random	06L	
	distribution of sample mean vector		
UNIT-02	Wishart's Distribution: Wishart matrix – its distribution and properties, distribution of sample	06L	
	generalized variance, null and non-null distribution of multiple correlation coefficients.		
UNIT-03	Hotelling's T ² Distribution: Hotelling's T ² and its sampling distribution, application in test on	06L	
	mean vector for one and more multivariate normal population and also on equality of		
	components of a mean vector in multivariate normal population.		
UNIT-04	Classification problem: Standards of good classification, procedure of classification based on	06L	
	multivariate normal distributions.		
UNIT-05	Discriminant analysis: Classification of observations into one or two or more groups.	12L	
	Estimation of the misclassification probabilities. Test associated with discriminate functions.		
	Principal Component Analysis: Principal components, dimension reduction, canonical variates		
	and canonical correlation—definition, use, estimation and computation.		
Course Outcor	nes		
Upon successfu	ul completion of the course, the students will be able to		
CO1: Derive	e various multivariate sampling distributions.		
CO2: Under	rstand how the Wishart distribution arises in multivariate sampling and how to use it.		
CO3: Understand how to use various multivariate statistical methods.			
CO4: Assess the multivariate nature of the data sets and drive their properties.			
Books and References			
1. An Introduction to Multivariate Statistical Analysis by I.W. Anderson, John Wiley and Sons.			
2. Applied Mul	2. Applied multivariate Statistical Analysis by N.C. Giri, Academic Press.		
3. Applied Multivariate Statistical Analysis by R.A. Johnson and D.W. Wichern, Prentice Hall of India.			

4. Multivariate data analysis by J.F. Hair, W.C. Black, B.J. Babin, R.E. Anderson, Pearson.

Course Name:	Game Theory	
Course Code:	MA-430	
Course Type:	Professional Elective-I	
Contact Hours/	Neek: 3L	Course Credits: 03
Course Object	ives	
To provide a	an introduction to Game Theory	
 To explain i 	n depth the standard equilibrium concepts.	
To explain a	and predict how individuals behave in a specific strategic situation.	
Unit Number	Course Content	Lectures
UNIT-01	Two Person Zero Sum Games: The nature of games, Matrix Games – Dominance and Saddle point, Mixed strategies, Game trees, Application to business – Competitive decision making, utility theory, Games against nature.	08L
UNIT-02	Two Person Zero Sum Games and Applications: Nash equilibrium and Non-cooperative solutions, the Prisoner's Dilemma, Application to Social Psychology – trust, suspicion, and the F-scale.	07L
UNIT-03	Strategic Moves: Basic of Strategic moves, Application to Biology – evolutionarily stable strategies, the Nash arbitration scheme and cooperative solutions, Application to Business – Management-Labor arbitration.	06L
UNIT-04	N-Person Games: Introduction to N-Person games, Application to Politics – Strategic voting, N- Person's Dilemma, Application to Athletics – Prisoner's Dilemma and the Football Draft.	08L
UNIT-05	Imputations, Dominance and Stable Sets: Application to Anthropology – Pathan organization, the core, the shapely value, Application to Politics – the shapley-shubik power index.	07L
Course Outcor	nes	
Upon successfe	ul completion of the course, the students will be able to	
CO1: Identify	y strategic situations and represent them as games.	
CO2: Solve	simple games using various techniques.	
CO3: Analyse economic situations using game theoretic techniques.		
Books and References 1. Game Theory and Strategy by P. D. Straffin , Mathematical Association of America.		
 Linear programming by G. Hadley, Narosa Publishing House. Operation Dependent Theory. Methods and Applications by C.D. Charma and U. Charma. Keder Math. & Commun. 		
5. Operation Research: meory, interious and Applications by S.D. Sharma and n. Sharma, Redai Nath & Company.		

- Operations Research for Management by G.V. Shenoy, U.K. Srivastava, S C Sharma, New Age International (P) Ltd.
 Game theory and its applications by W. F. Lucas, Mathematical Association of America.

Course Code: MA-431 Course Type: Professional Elective-I		
Course Type: Professional Elective-I		
Contact Hours/Week: 3L Course Credits: 03		
Course Objectives		
• To impart knowledge about the principles and methods of mathematical modeling for studies of complex systems in science		
engineering, and business.		
Io compare modeling results to observations and how models can be improved.		
I o learn how to model "real" problems and prepare the mathematical models for analysis.		
Unit Number Course Content Lectures		
UNIT-01 Introduction: Gradient vectors; Examples; Optimization of function of multiple variables subject to equality constraints; Lagrangian function; Optimization of function of multiple variables subject to equality constraints; Hessian matrix formulation; Eigen values; Kuhn-Tucker Conditions; Examples.		
UNIT-02 Non Linear Programming: Unconstrained optimization techniques, Direct search methods, Descent 10L methods, 2 nd order methods, constrained optimization, Direct and indirect methods, Kuhn Tucker conditions.		
UNIT-03 Dynamic Programming: Sequential optimization; Representation of multistage decision process; Types of multistage decision problems; Concept of sub optimization and the principle of optimality; Recursive equations – Forward and backward recursions; Computational procedure in dynamic programming (DP); Discrete versus continuous dynamic programming; curse of dimensionality in DP, example.		
UNIT-04 Integer and Quadratic Programming: Linear integer program formulations and applications, cutting plane algorithm, branch and bound algorithms; Quadratic programming Problems (QPP), Wolfe's method, dual of QPP, applications of QPP in portfolio and support vector machines.		
UNIT-05 Stochastic Programming: Basic Properties of SP and its Theory, The value of information and stochastic solution. Two Stage Linear resource Problem, Non-Linear approaches to two-stage recourse problem		
Course Outcomes		
Upon successful completion of the course, the students will be able to		
CO1: Create mathematical models of empirical or theoretical phenomena.		
CO2: Draw inferences from models .		
CO3: Take an analytical approach to problems in their future endeavours.		
Books and References		
1. Engineering Optimization: Theory and Practice by S.S. Rao, New Age International (P) Ltd.		
2. Numerical optimization with applications by S. Chandera, Jaydeva, and A. Mehta, Narosa publications.		
3. An introduction to optimization by Edvin K.P. Chong, and Stanislaw H. Zak, John Wiley Publisher.		
4. Optimization theory and practice by M. C. Joshi, K. M Moudgalya, Narosa publications.		
Initiouuclion to Linear Optimization by D. Densimas, J. N. Tsitsikiis, Athena Scientific. Linear Programming: Foundations and Extensions by R. I. Vanderbei, Springer		

Course Name:	Information Theory and Coding	
Course Code:	MA-432	
Course Type:	Professional Elective-I	
Contact Hours/	Neek: 3L	Course Credits: 03
Course Object	ives	
To introduce	ce information theory	
To give an	overview of coding theory and practice	
 To illustrate 	e ideas with a large range of practical applications	
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Information measure and source coding, Information measure, Entropy and Information	06L
	rate, Coding for a discrete memory less source, Predictive coding for sources with memory,	
	Information transmission on discrete channels, Mutual information.	
UNIT-02	Discrete Channels: Classification of channels. Information processed by a channel. Calculation of	08L
	channel capacity. Decoding schemes. The ideal observer. The fundamental theorem of Information	
	Theory and its strong and weak converses.	
	Continuous Channels: The time-discrete Gaussian channel. Uncertainty of an absolutely continuous	
	random variable. The converse to the coding theorem for time-discrete Gaussian channel. The time-	
	continuous Gaussian channel. Band-limited channels.	
UNIT-03	Noiseless Coding: Ingredients of noiseless coding problem. Uniquely decipherable codes.	08L
	Necessary and sufficient condition for the existence of instantaneous codes. Construction of optimal	
	codes.	
	Ine Coding Problem: Types of codes, Block codes, Types of codes such as repetition codes, Parity	
	check codes and their error-detection and confection capabilities. Harning metric, Relationship of	
	enor detection/confection with namining distance, waximum likelihood decoding procedure, Decoding	
	by syndrome decountry and Non Binard: Minimum distance. Dimension Modular representation of	081
0111-04	Linear codes Description of linear codes by matrices. Polynomial codes. Generator and parity check	UOL
	inteal codes, Description of linear codes by matrices, if orghomial codes, Denerator and party check	
	Dual Codes: Self duality. Weight distribution of dual of binary linear codes. Macwilliam identity/ binary	
	case) extending. Expurgating and augmenting a code Lee metric. Convolutional codes. Description	
	using matrices and polynomials. Encoding using (4.3.2) encoder	
UNIT-05	Hamming Codes (Binary and Non-Binary): Properties. Perfect and quasi-perfect codes. Golav	06L
	codes as perfect codes. Bounds on minimum distance for block codes. Plotkin bound. Hamming	••-
	sphere.	
Course Outcor	nes	
Upon successfu	ul completion of the course, the students will be able to	
CO1: Desig	n the channel performance using Information theory.	
CO2: Comp	rehend various error control code properties	
CO3: Apply	linear block codes for error detection and correction	
CO4: Apply	convolution codes for performance analysis.	
Books and Ref	erences	
1. An Int	roduction to Information Theory by F.M. Reza, MacGraw-Hill Book Company Inc.	
2. On M	easures of Information and their Characterizations by J. Aczel, Z. Daroczy,, Academic Press.	
3. Inform	nation Theory by R. Ash, Inderscience Publishers.	
4. Error-	Correcting Codes by W.W. Peterson and E.J. Weldon, Jr., M.I.T. Press.	

Course Name:	Graph Theory		
Course Code:	MA-433		
Course Type:	Professional Elective-I		
Contact Hours/	Neek: 3L Co	ourse Credits: 03	
Course Object	ives		
To present a	a rigorous introduction to the fundamentals of graph theory		
To enable the second seco	he students to model various applications of from science and engineering using graphs.		
Unit Number	Course Content	Lectures	
UNIT-01	Introduction to Graphs : Basic Terminology, walks, paths, circuits, connectedness, Handshaking lemma, Isomorphism, Sub graphs, Reach ability, Union and interaction of graphs, Euler graph, Shortest path problem, Hamiltonian graph, Traveling sales man problem, Bipartite graphs.	08L	
UNIT-02	Trees: Introduction to Trees, characterizations, Rooted trees, spanning trees, fundamental circuits, counting of minimum spanning tree, cut set and cut vertices.	06L	
UNIT-03	Paths and Distance in Graphs: Basic Definitions, center and median of a graph, activity digraph and critical path.	06L	
UNIT-04	Graph Coloring: vertex coloring, chromatic polynomials, edge coloring, planar graph coloring.	07L	
UNIT-05	Matching and Factorizations: maximum matching in bipartite graphs, maximum matching in general graphs, Hall's marriage theorem, factorization. Networks: The Max-flow min-cut theorem, connectivity and edge connectivity, Menger's theorem; Graph and Matrices.	09L	
Course Outcor	nes		
Upon successfu	I completion of the course, the students will be able to		
CO1: Apply	principles and concepts of graph theory in practical situations.		
CO2: Under	rstand graphs as models.		
CO3: Understand various types of trees and graph coloring.			
Books and References			
1. Introduction to graph theory by D.B. West, Pearson.			
2. Applied and algorithmic graph theory by G Chatrand and C.R. Ollermann, McGraw Hill.			
A Graph Theory by J. A. Donuy and U.S.K. Murty, Sphinger.			

Course Name	Analysis and Design of Algorithms	
Course Code:	MA-434	
Course Type:	Professional Elective-I	
Contact Hours/	Neek: 3L	Course Credits: 03
Course Object	ives	
To teach p	aradigms and approaches used to analyze and design algorithms and to appreciate the impact of	algorithm design in
practice.		
To make s	tudents understand how the worst-case time complexity of an algorithm is defined, how asymptotic	c notation is used to
provide a r	ough classification of algorithms.	
 To explain 	different computational models (e.g., divide-and-conquer), order notation and various complex	tity measures (e.g.,
running tim	ne, disk space) to analyze the complexity/performance of different algorithms	
• To teach	various advanced design and analysis techniques such as greedy algorithms, dynamic program	mming & Know the
concepts c	if tractable and intractable problems and the classes P, NP and NP-complete problems.	
		Lectures
UNIT-01	Algorithms introduction: Algorithm Design paradigms- motivation, concept of algorithmic efficiency, run time analysis of algorithms. Asymptotic Notations	06L
	Divide and Conquer Approach: Structure of divide and conquer algorithms: sets and disjoint sets:	061
0111-02	Union and Find algorithms, quick sort, Finding the maximum and minimum. Quick Sort, Merge sort	
	Hean and hean sort	
UNIT-03	Greedy Algorithms: Optimal storage on tapes. Knapsack problem Job sequencing with deadlines.	101
	Minimum Spanning trees: Prim's algorithm &Kruskal's algorithm. Huffman codes.	
	Dynamic Programming: Overview, difference between dynamic programming and divide and	
	conquer, Matrix chain multiplication, Traveling salesman Problem, longest Common sequence,	
	0/1 knapsack.	
UNIT-04	Graph Algorithms: Representation of graphs, BFS, DFS, Topological sort, strongly connected	10L
	components; single source shortest paths: Bellmen-Ford algorithm, Dijkstra's algorithm; All pairs	
	shortest path: The Warshall's algorithm.	
	Backtracking, Branch and Bound: 8-Queen Problem, Sum of subsets, graph coloring,	
	Hamiltonian cycles. Branch and bound: LC searching Bounding, FIFO branch and bound, LC	
	Computational Complexity Complexity measures Delynamial Venepolynamial time	041
0001-05	complexity: NP-hard and NP-complete classes examples	04L
Course Outcor	nes	
Upon successfu	I completion of the course, the students will be able to	
CO1. Choose appropriate algorithm design techniques for solving problems and to understand how the choice of data structures		
and th	he algorithm design methods impact the performance of programs.	
CO2: Clear	up troubles the usage of set of rules design methods including the grasping approach, divide and	overcome, dynamic
programming, backtracking and department and certain		
CO3: Under	rstand the variations among tractable and intractable problems and to introduce p and np classes	
Books and References		
1. Introduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, MIT Press.		
2. Fundamen	tals of Computer Algorithms by E. Horowitz and S. Sahni, S. Rajasekaran, Universities Press.	
3. The Design	n and Analysis of Computer Algorithms by A.V. Aho, J.E. Hopcroft and J.D. Ullman, Pearson.	
4. Data Structures and Algontinnic Puzzles by N. Naturnanchi, Gareenwonk Publications.		

- The Algorithm Design Manual by S. S Skiena, Springer.
 Introduction to the Design and Analysis of Algorithms by A. Levitin, Pearson.

Course Name:	Digital Image Processing	
Course Code:	MA-450 Drefessional Flactive II	
Course Type.		Course Credite: 02
		Jourse Credits. US
	ives the image fundamentals and mathematical transforms necessary for image processing	
 To study To design 	and implement elections and mathematical italisions necessary for image processing.	anhancoment) and
 To design advanced 	r and implement algontinns that periorni basic image processing (e.g. hoise removal and image Limage analysis (e.g. image compression, image segmentation, Pattern Peccognition)	ennancement) and
	a the performance of image processing algorithms and systems	
Init Number	course Content	Lectures
	Introduction: Digital image representation. Fundamental steps in image processing. Elements of	051
	Digital Image processing systems. Elements of visual percention. Image model, Image sampling and	UJL
	auantization. Relationship between nivels. Imaging geometry	
	Image Enhancement and Restoration: Image Enhancement in the Spatial Domain: Background	001
0111-02	Basic grav level transformation. Histogram processing Basics of spatial filtering. Smoothing and	052
	Sharpening Shatial filters. Frequency domain and Image Enhancement: Introduction to Fourier	
	Transform and the Frequency Domain. Discrete Fourier Transform. Smoothing and Sharpening	
	Frequency-Domain filters.	
	Image Degradation/Restoration Process. Types of degradations in digital images. Noise models.	
	Restoration in presence of noise using filters: Mean filter, Minimum Mean Square Filtering, Geometric	
	mean filter, Geometric transformations.	
UNIT-03	Image Compression: Coding redundancy, Inter-pixel redundancy, fidelity criteria, Image	07L
	compression models, Error-free compression, Variable length coding, Bit-plane coding, Loss-less	
	predicative coding, Lossy compression, Image compression standards, Fractal Compression, Real-	
	Time image transmission, JPEG and MPEG.	
UNIT-04	Image Segmentation: Detection of discontinuities, Edge linking and boundary detection,	07L
	Thresholding, Otsu's threshold, Region oriented segmentation, Use of motion in segmentation, Spatial	
	techniques, and Frequency domain techniques.	
UNIT-05	Pattern Recognition: Classification and description, Structure of a pattern recognition system,	08L
	teature extraction, Classifiers, Decision regions and boundaries, discriminate functions,	
	Supervised and Unsupervised learning, PR-Approaches statistics, syntactic and neural.	
	Statistical Pattern Recognition: Statistical PR, Classifier Gaussian Model, Classifier	
	performance, Risk and error, Maximum likelinood estimation, Bayesian parameter estimation	
0	approach, clustering for unsupervised learning and classifiers.	
Course Outcor	nes I completion of the course, the students will be able to	
	different techniques employed for the enhancement of images	
CO2: Under	stand the need for image compression and to learn the spatial and frequency domain t	echniques of image
compi	ression	echniques of intage
CO3: Learn	different feature extraction techniques for image analysis and recognition.	
CO4: Under	rstand the rapid advances in Machine vision.	
Books and Ref	erences	
1. Digital Im	age Processing by R. Gonzalez and R. E. Wood, Prentice Hall of India.	
2. Digital Im	age Processing by W.K. Pratt, McGraw Hill.	
3. Fundame	ntals of Digital Image Processing by A. K. Jain, Prentice Hall of India.	
4. Feature E	xtraction and Image Processing for Computer Vision by M. Nixon, Academic Press.	
5. Introducto	ory Computer Vision and Image Procession by A. Low, McGraw Hill.	
6. Pattern R	ecognition-Statistical, Structural and neural approach by R. Schalkoff, John Willey & Sons.	
7. Handbool	k of Mathematical Methods in Imaging by Scherzer, Springer.	
8. Image Pro	cessing: Analysis and Machine Vision by Milan Sonka, Roger Boyle, and Vaclav Hlavac	

Course Name:	Data Mining	
Course Code:	MA-451	
Course Type:	Professional Elective-II	
Contact Hours/	Week: 3L C	ourse Credits: 03
Course Object	ives	
 To identify t 	he scope and necessity of Data Mining & Warehousing.	
 To develop 	further interest in research and design of new Data Mining techniques.	
 To develop 	ability to design various algorithms based on data mining tools.	
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Motivation for Data Mining, its importance, Role Data in Data Mining, Data Mining	03L
	functionalities.	
UNIT-02	Patterns in Data Mining: Type of patterns, Classification of Data Mining Systems, Major issues in	06L
	Data Mining, Data cleaning & transformation, data synchronization with operational databases.	
UNIT-03	Data Warehousing and OLAP: OLAP Technology for Data Mining, Data Mining Languages, and	07L
	System Architectures, Concept Description: Characterization and Comparison, Mining Association	
	Rules in Large Databases.	
UNIT-04	Classification Techniques: Classification and Prediction, Cluster Analysis, Mining Complex	10L
	Data, Applications and Trends in Data Mining Characteristics of data warehouse, Data Mart,	
	Online Analytical Processing, OLAP tools, LIFT charts and ROC curves.	
UNIT-05	Data Warehouse: Architecture, Organizational Issuer, Tools for Data warehousing,	10L
	Performance consideration, case studies. Special topics in data mining and data ware housing.	
Course Outcor	mes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Demo	onstrate an understanding of the importance of data mining and the principles of business intelligence	ce,
CO2: Imple	ment the appropriate data mining methods like classification, clustering or Frequent Pattern mining	on large data sets.
CO3: Organize and Prepare the data needed for data mining using pre preprocessing techniques		
Books and Ref	ierences	
1. Data Mining – Concepts and Techniques by J. Han, M. Kamber and J. Pei, Elsevier.		
2. Multimedia Data Mining: A Systematic Introduction to Concepts and Theory by Z. Zhang, R. Zhang, Chapman & Hall.		
Statistic	al Language Models for Information Retrieval by C. Zhai, Morgan and Claypool.	
4. Link Mir	ning: Models, Algorithms and Applications by P. S. Yu, J. Han, and C. Faloutsos, Springer	

4. Link Mining: Models, Algorithms and Applications by P. S. Yu, J. Han, and C. Faloutsos, Springer.

Course Name: Parallel Algorithms		
Course Code: MA-452		
Course Type: Professional Elective-II		
Contact Hours/Week: 3L	Course Credits: 03	
Course Objectives		
 To introduce principles and design techniques of parallel algorithms. 		
 To develop algorithms and implement them in parallel computers. 		
To introduce data structures for various parallel architectures.		
Unit Number Course Content	Lectures	
UNIT-01 Introduction to Parallel Algorithms and Architectures: EREW, CREW, CRCW PRAM interconnection network models, Need for Parallel Processing, Data and Temporal Paral Models of Computation, RAM and PRAM Model, Shared Memory and Message Passing M Processor Organizations, PRAM Algorithms, Analysis of PRAM Algorithms- Parallel Program Languages.	is and 08L llelism, lodels, mming	
UNIT-02 Parallelization of Algorithm: Parallel Programming Models, PVM (Parallel Virtual Machine), MPI (Message Passing Interfacits routines, Brent's Theorem, Message passing algorithm, Load balancing and termination determination determination with shared memory, programming for Distributed shared memory.	e) and ection,	
UNIT-03 Basic Parallel Algorithmic Techniques Divide-and-Conquer, Partitioning, pipelining, Accelerated Cascading, Symmetry Bre Synchronization (Locked, Lock-free) Parallel Algorithms and Data organization for shared/distr memory, Min/Max,Sum Searching, Merging, Sorting.	06L ∋aking, ributed	
UNIT-04 Parallel Sorting and Sorting Networks: Parallel Insertion Sort, Even-odd Merge Sort, E Merge Sort, Prefix operations, Parallel algorithms on network, Addition of Matrices, Multipli of Matrices.	3itonic 08L cation	
UNIT-05 Parallel Programs Using GPU: Introduction to Graphics Processing Units (GPUs), of Programming Model, CUDA API, Simple Matrix Multiplication in CUDA, CUDA Memory M Shared Memory Matrix Multiplication, Additional CUDA API Features, and Optimi Techniques: Understanding threads and blocks execution, Memory Bank Conflicts, Pr Thread Execution, Control Flow, Precision, Optimizing CPU-GPU usage.	CUDA 07L Model, zation arallel	
Course Outcomes		
Upon successful completion of the course, the students will be able to		
CO1: Describe and use the main design techniques for sequential algorithms		
CO2: Design, prove the correctness and analyze the computational complexity of sequential algorithms		
CO3: Understand the difference between sequential and parallel algorithms		
Books and References		
1. Parallel Programming Lechniques and Applications by W. Barry , M. Allen, Pearson.		
 An introduction to Parallel Algorithms by J. Jaja, Addison-Wesley Protessional. CUDA by Eventley An Introduction to Conorol Dymass CDU Departments by L. Conders and E. K. 	andrat Nuidia	
OUDA by Example. An inflooduction to General-Purpose GPU Programming by J. Sanders and E. Kandrot, NVIdia. Derallel Computers prohitesture and programming by V. Paieremen and C.S.D. Muthy. Drantice Hell of India		
5. Programming Massively Parallel Processors; A Hands-on Approach by D. Kirk and Wen-mei Hwu. F	Elsevier.	

Course Name:	Design and Analysis of Experiments	
Course Code:	MA-453	
Course Type:	Professional Elective-II	
Contact Hours/	Week: 3L C	ourse Credits: 03
Course Object	ives	
To impart k	nowledge about the desining the experiments under certain layouts and their analysis.	
To introduce	e the fundamental concepts relevant to designed experiments.	
To enable t	he students to understand the factors that cause the response variable under designed experiment	S.
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Analysis of basic designs, relative efficiency, analysis of covariance for CRD and RBD.	06L
	Assumptions of analysis of variance.	
UNIT-02	Missing Plot Techniques: Missing plot techniques in designs of experiments: completely	04L
	randomized design and randomized block design.	
UNIT-03	Factorial Experiments: Factorial experiments: 2 ⁿ , 3 ² and 3 ³ systems. Complete and partial	08L
	confounding, fractional factorial designs in 2^n system alongwith construction of the design and	
	analysis.	
UNIT-04	Incomplete Block Designs: Balanced incomplete block designs, simple lattice designs, split plot	06L
	designs, strip plot designs, alongwith construction of the designs and analysis.	
UNIT-05	Response Surface Designs: Response surface areas, first and second order designs blocking	12L
	in response surfaces, optimal designs for response surfaces.	
	Experiments with Random Factors: Random effects model, two – factor factorial with random	
	factors, two – factor mixed model, sample size determination with random effects.	
Course Outcor	nes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Identi	fy the basic structues and principles of design of experiments.	
CO2: Describe various kind of design of experiments.		
CO3: Apply principles of various kind of design of experiments where data are from various and evolving dimensions.		
CO4: An understanding of the relationship between the purpose of a model and and the appropriate level of accuracy.		
Books and Ref	ferences	
1. Design and Analysis of Experiments by D.C. Mongomery, John Wiley and Sons.		

Statistical Design by G. Casella, Springer.
 A First course in Design and Analysis of Experiments by G.W. Oehlert, University of Minnesota

Course I	Name:	Quantum Information And Computing	
Course (Code:	MA-454	
Course -	Type:	Professional Elective-II	
Contact	Hours/\	Neek: 3L	Course Credits: 03
Course	Objecti	ives	
 To ir 	mpart ki	nowledge about the fundamental concepts of Physics and Mathematics needed to understand the	concept of quantum
com	puting.		
 To in 	ntroduce	e the fundamental concepts relevant to quantum computing such as quantum bit, quantum machine).
 To e 	enable th	ne students to understand quantum information theory, quantum cryptograpy etc.	
Unit Nu	umber	Course Content	Lectures
UNIT	-01	Mathematical Tools of Quantum Mechanics: Hilbert space, Dirac notations, Operators	07L
		and their expectation values, representation of discrete bases, representation of	
		continuous bases, Orthogonality of Eigen Functions	
UNIT	-02	Postulates of Quantum Mechanics:- The Basic Postulates of Quantum Mechanics, The	07L
		State of a System, Observables and Operators, Measurement in Quantum, Time Evolution of	
		the System's State.	
UNIT	-03	Introduction to Quantum Computation: Quantum bits, Bloch sphere representation of a qubit,	06L
		multiple qubits	
UNIT	-04	Quantum Circuits: single qubit gates, multiple qubit gates, design of quantum circuits	06L
UNIT	-05	Quantum Information, Cryptography and Algorithms: Comparison between classical and	10L
		quantum information theory. Bell states. Quantum teleportation. Quantum Cryptography, no	
		cloning theorem, Deutsch's algorithm, Deutsch's-Jozsa algorithm	
Course	Outcor	nes	
Upon su	iccessfu	I completion of the course, the students will be able to	
CO1:	Identi	fy the applications of quantum computing.	
CO2:	Descr	ibe the quantum machines, measurements in quantum and qubit.	
CO3:	Descr	ive the advantages of quantum information theory and quantum cryptography and can	
	apply	these concepts.	
Books and References			
1.	Quant	tum Computation and Quantum Information by M A Nielsen, Cambridge University Press.	
2.	Quant	tum Physics by S Gasiorowicz, John Wiley & Sons.	
3.	A Tex	t Book of Quantum Mechanics by P M Mathews , K Venkatesan, Tata McGraw Hill.	
4.	Quant	tum Mechanics, A. Ghatak A. S. Lokanathan, Macmillan India Ltd.	

Course Name:	Mathematical Foundations for Machine Learning	
Course Code:	MA-440	
Course Type:	Professional Elective-III	
Contact Hours/	Week: 3L	Course Credits: 03
Course Object	ives	
 To introduc 	e the mathematical topics, techniques and results that form the backbone of some major ML algorit	hms
To make th	e student appreciate both the utility and aesthetics of the different fields in Mathematics.	
To provide	a firm theoretical foundation for existing methods.	
To equip the	e students with the skills necessary to further their research in Machine Learning.	
Unit Number	Course Content	Lectures
UNIT-01	Data Representation: Eigenvalues, Eigenvectors, Linear Regression, Principal Component	06L
	Analysis (PCA), Singular value decomposition (SVD), Fischer Discriminant	
UNIT-02	Theory of Machine Learning: Functionals, Hilbert Spaces, Riesz Representation Theorem,	06L
	Kernel Trick, Kernel PCA, Kernel SVM.	
UNIT-03	Sparse Approximation: Norm Minimization, Sparse Representation Theory, Dimensionality	08L
	Reduction	
UNIT-04	Supervised Learning: Convex Optimization, Primal-Dual Transformations, Karush-Kuhn-	08L
	Tucker Conditions, SVM, Probability and Measures, Types of Convergences, Statistical Learning	
	Theory, VC dimension and Capacity, Blackwell's approachability	
UNIT-05	Unsupervised Learning: Expectation Maximization, EM-based Clustering, C-means clustering,	08L
	Fuzzy CM clustering. Operator Theory, Decomposition of Operators and Subspaces.	
Course Outco	mes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Understa	nd mathematical concepts used in Machine learning algorithms.	
CO2: Learn the	oretical concept of supervised and unsupervised learning in ML algorithms.	
CO3: Apply the skills neccessary to do further research in the field of ML.		
Books and Re	ferences	
1. Foundations of Machine Learning by M. Mohri, A. Rostamizadeh, A. Talwalkar,, MIT Press.		
2. The elements of Statistical learning, Data Mining, Inference and Prediction by T. Hatsei, R. Tibshirani, J. Friedman, Springer		
Series in Statistics.		
3. Pattern	Recognition and Machine Learning by C.M. Bishop, Springer (India).	
4 Maabia	Learning by T.M. Mitchell, McCrew LUI	

Pattern Recognition and Machine Learning by C.M.
 Machine Learning by T.M. Mitchell,, McGraw-Hill.

Course Name:	Data Analysis Using Python	
Course Code:	MA-441	
Course Type:	Professional Elective-III	
Contact Hours/	Week: 3L	Course Credits: 03
Course Object	ives	
 To use inde 	xing and slicing to access data in Python programs.	
To use exce	eption handling in Python applications for error handling.	
• To enable t	he students to understand the factors that why Python is a useful.	
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Pandas Data Frame Basics - loading, sub setting rows and columns, grouped and	06L
	aggregated, Basic Plot, Pandas Data Structures - creating a series and data frame, Boolean	
	sub setting: series, broadcasting, marketing changes to series and data frames, exporting and	
	importing data.	
UNIT-02	Introduction to Plotting: Introduction, matplotlib, statistical graphics using matplotib, seaborn,	10L
	Pandas objects, seaborn themes and styles. Data manipulation: data assembly, missing data, tidy	
	data.	
UNIT-03	Data Mining: Data types, converting types, categorical data, string and text data, string methods,	08L
	string formatting, regular expressions – match, find, substituting and compiling a pattern.	
UNIT-04	Data Modeling: Linear Models - introduction, simple linear regression, multiple regressions,	06L
	generalized linear models – logistic regression, poisson regression, survival analysis.	
UNIT-05	Model Diagnostics: Residuals, comparing multiple models, k-fold cross validation,	06L
	regularization - LASSO regression, ridge regression, clustering - k-means, hierarchical	
	clustering.	
Course Outco	nes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Have	problem solving and programming capability.	
CO2: Apply	Regression algorithms.	
CO3: Apply	Classification algorithms.	
Books and Re	ferences	
1. Pandas f	or everyone – Python Data Analysis by D.Y. Chen, Pearson.	
2. Think Py	thon How to Think Like a Computer Scientist by A. Downey, Green Tea Press	

Think Python How to Think Like a Computer Scientist by A. Downey, Green Tea Pr
 Online source: Python for Beginners- https://www.python.org/about/gettingstarted

Course Name:	Theory of Computation	
Course Code:	MA-442	
Course Type:	Professional Elective-III	
Contact Hours/V	Veek: 3L	Course Credits: 03
Course Objecti	ves	
 To introduce 	e students to the mathematical foundations of computation including automata theory; the theory of	of formal languages
and gramma	ars; the notions of algorithm, decidability, complexity, and computability.	
 To enhance. 	/develop students' ability to understand and conduct mathematical proofs for computation and algor	rithms.
 To understa 	nd basic properties of Turing machines and computing with Turing machines.	
Unit Number	Course Content	Lectures
UNIT-01	Machines: Basic machine, FSM, Transition graph, Transition matrix, Deterministic and non- deterministic FSM'S, Equivalence of DFA and NDFA, Mealy & Moore machines, minimization of finite automata, Two-way finite automata.	06L
UNIT-02	Grammars: Regular Sets and Regular Grammars: Alphabet, words, Operations, Regular sets, Finite automata and regular expression, Pumping lemma and regular sets, Application of pumping lemma, closure properties of regular sets. Formal Grammars & Languages: Basic definitions and examples of languages, Chomsky hierarchy, Regular grammars, context free & context sensitive grammars, context free languages, non-context free languages, Chomskey normal forms, binary operations on languages.	08L
UNIT-03	Turing Machines & Pushdown Automata: TM model, representation and languages acceptability of TM Design of TM, Universal TM & Other modification, composite & iterated TM, Pushdown automata, Acceptance by PDA.	07L
UNIT-04	Computability and Undecidibility: Basic concepts, primitive & partial recursive function, Recursive function, Decidability, Kleen's theorem. Undecidibility: Properties of recursive & recursively enumerable languages, Universal Turing machine and undecidable problem, Rice's theorem & some more undecidable problems.	07L
UNIT-05	Computational Complexity Theory: Definition, linear speed-up, tape compression & reduction in number of tapes, Hierarchy Theorem, Relation among complexity measures, Transition lemmas & non deterministic hierarchies, properties of general complexity measures, the gap, speed-up, union theorem, Automatic complexity theorem.	08L
Course Outcon	nes	
 Upon successful completion of the course, the students will be able to CO1: Analyse and design finite automata, pushdown automata, Turing machines, formal languages, and grammars. CO2: Demonstrate the understanding of key notions, such as algorithm, computability, decidability, and complexity through problem solving. CO3: Prove the basic results of the Theory of Computation. 		
Books and Ref	erences	
 Introduction to Automata theory, Langauges & computation by J. E. Hopcroft, J.D. Ullman, Narosa Publishers. Theory of computer Science by K.L.P. Mishra, Prentice Hall of India. Introductory Theory of Computer science by E.V. Krishnamurthy, East West Press. Introduction to Languages and the Theory of Computation by J. Martin, McGraw-Hill Education. 		
5. An introdu	uction to formal languages and automata by P. Linz, Narosa.	

Course Name:	Operator Theory	
Course Code:	MA-443	
Course Type:	Professional Elective-III	
Contact Hours/	Week: 3L	Course Credits: 03
Course Objec	tives	
 To introdu 	ce basic operator theoretic methods as a second course in functional analysis.	
To unders	stand the relevance of operator theory in quantum mechanics.	
Unit Number	Course Content	Lectures
UNIT-01	Banach Algebras: Basics, The spectrum, The holomorphic function calculus, The Banach algebra	06L
UNIT-02	C*-Algebras: Introduction to C*-algebras, non-commutative states and representations, Gelfand-Neumark representation theorem.	08L
UNIT-03	Normal Operators: Spectral Theorem for normal operators and its applications to operators on a Hilbert space. Von Neumann, Algebras: Projections, Double, Commutant theorem, L [®]	08L
	functional Calculus.	
UNIT-04	Compact Operators : C*-algebras of Compact operators, Compact operators on Hilbert Spaces: The theory of Fredholm operators: spectral theory of compact operators (Fredholm Alternative).	10L
	Toenlitz Operators: Toenlitz operators	0/1
Course Outco		V4L
Upon successf	ill completion of the course, the students will be able to	
CO1: Underst	and and apply fundamental theorems from the theory of normed and Banach space	
CO2: Underst	tanding of main topics of Banach Algebras and Spectral Theory: spectrum and resolvent, adjoint op	erators. compact
operator	s, self-adjoint and normal operators, Gelfand Representation, Riesz-Fredholm Theory, C*-Algebras	· · · · · · · · · · · · ·
CO3: This cour	rse open ways to different research areas in this branch particularly and also in the area of functiona	al analysis broadly,
like repre	esentation theory, operators on different function spaces etc.	
Books and Re	ferences	
1. Kadison a	nd Ringrose, Fundamentals of operator theory, Vol. I and II, Academic press.	
2. Rickart, G	eneral theory of Banach Algebras, Van Nostrand.	
3. W. Arveso	on, An invitation to C*-Algebras, Springer-Verlag.	
4. Palmer, B	anach Algebras and the general theory of C*-algebras, Cambridge University Press.	
5 N Dunfor	d and J.T. Schwarts, Linear Operators – 3, John Wiley and Sons	

N. Dunford and J.T. Schwarts, Linear Operators – 3, John Wiley and Sons.
 A. Taylor and D. Lay, Introduction to Functional Analysis, John Wiley and Sons.

Course Name:	Computer Networks	
Course Code:	MA-444	
Course Type:	Professional Elective-III	
Contact Hours/	Neek: 3L	Course Credits: 03
Course Object	ives	
 To impart kr 	nowledge about the principles of networking and internetworking.	
To introduce	e the fundamental concepts relevant to design issues of different network layers	
Unit Number	Course Content	Lectures
UNIT-01	Introductory Concepts: Goals and Applications of Networks, LAN, WAN, MAN, Wireless	06L
	network, Network software: Protocol hierarchies, design issues of layers, Interfaces and	
	services. Reference Model: The OSI reference model, TCP/IP reference model, Example networks: The ARPANET, The Internet.	
UNIT-02	Physical Layer: Fourier analysis, Maximum data rate of a channel, Transmission media,	04L
	Wireless transmission, Virtual circuits, Circuit switching.	
UNIT-03	Data Link Layer: Data link layer design issues, services provided to network layers, Framing,	14L
	Error control, Flow control, Error detection and correction, Elementary data link protocols, An	
	unrestricted Simplex protocol, A Simplex Stop-and-Wait protocol, Simplex Protocol for a noisy	
	channel, Sliding Window protocols, A one-bit Sliding protocol, A protocol using go-back-N, A	
	protocol using selective repeat.	
UNIT-04	Medium Access Sub-layer: Channel Allocations, Static and dynamic allocation in LAN and	06L
	MAN, Multiple Access protocols, ALOHA, Carrier Sense multiple access protocols, Wireless	
	protocols, Collision free protocols, Limited contention protocols, IEEE standard 802.3 and	
	Ethernet, IEEE standard 802.4, Token bus IEEE standard 802.5, Token Ring, Distributed Queue	
	Dual bus, Logical link control, bridges, High speed LAN.	
	Algorithms Internetworking	
LINIT-05	Transport Laver: Transport services Design issues elements of transport protocols simple	061
	transport protocols. Connection management TCP UDP	UUL
	Session, Presentation and Application Laver: Session Laver - Design issues, remote	
	procedure call. Presentation Layer - Design issues. Application Layer - File Transfer, Access	
	and Management, Electronic mail.	
Course Outcor	nes	
CO1: Understa	nd network layers, models and architectures.	
CO2: Analyze t	the performance of various MAC, routing, and transport protocols.	
CO3: : Solve ba	asic network design problems using knowledge of different layers in networking.	
Books and Ref	ferences	
1. Computer Networks by A.S. Lanenbaum, Prentice Hall of India.		
 Computer Networking: A Top-Down Approach Featuring the Internet by J. Kurose, K.W. Ross, Addison-Wesley. Data and Computer Computing the W. Otalliana, Departies Hall of India. 		
Data and Computer Communication by W. Stallings, Prentice Hall of India. Data Communication and Networking by Earouzon, 5 adition, McCrow Hill Education		
4. Data Communication and Networking by Forouzan, 5 edition, MCGraw Hill Education.		

Course Code: MA-460 Course Type: Professional Elective-IV Contact Hours/Week: 3L Course Credits: 03 Course Objectives Course objectives Course objectives • To inpart knowledge about the concepts of deep learning in data analysis. • To introduce the fundamental concepts relevant to different linear factor models and regularization. • Lectures Unit Number Course Content Lectures UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts 08L Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer 08L UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation 08L UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation attencencoders, Contractive autoencoders, Singular Value Decomposition, Atdencencoders Contractive autoencoders, Singular Value Decomposition, Atdencencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders 06L UNIT-03 Linear Factor Models: Contractive autoencoders Denoising autoencoders, Contractive autoencoders 07	Course Name:	Deep Learning	
Course Type: Professional Elective-IV Contract Hours/Week: 3L Course Credits: 03 Course Objectives - Course Objectives - • To impart knowledge about the concepts of deep learning in data analysis. - To introduce the fundamental concepts relevant to different linear factor models and regularization. - • To enable the students to understand convolutional neural networks and its applications. - Lectures UNIT Vumber Course Content Lectures UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPS), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation 08L UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) 06L UNIT-03 Linear Factor Models: Eigenvalue and eigenvectors, Eigenvalue Decomposition Autoencoders, and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders 07L UNIT-04 Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Datas	Course Code:	MA-460	
Contact Hours/Week: 3L Course Credits: 03 Course Objectives • To impart knowledge about the concepts of deep learning in data analysis. • To introduce the fundamental concepts relevant to different linear factor models and regularization. • To enable the students to understand convolutional neural networks and its applications. Unit Number Course Content Lectures UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts 08L Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation 08L UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) 06L UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis Principal Component Analysis and its interpretations, Singular Value Decomposition Autoencoders, Contractive autoencoders 07L UNIT-04 Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout, Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization 07L <	Course Type:	Professional Elective-IV	
Course Objectives • To impart knowledge about the concepts of deep learning in data analysis. • To introduce the fundamental concepts relevant to different linear factor models and regularization. • To enable the students to understand convolutional neural networks and its applications. Unit Number Lectures UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation 08L UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) 08L UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis Principal Component Analysis and its interpretations, Singular Value Decomposition Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders 07L UNIT-04 Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and trying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization 07L UNIT-05 Convolutional Neural Ne	Contact Hours/	Week: 3L	Course Credits: 03
 To impart knowledge about the concepts of deep learning in data analysis. To introduce the fundamental concepts relevant to different linear factor models and regularization. To enable the students to understand convolutional neural networks and its applications. Unit Number Course Content Lectures UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis Principal Component Analysis and its interpretations, Singular Value Decomposition Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders UNIT-04 Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization UNIT-05 Convolutional Neural Networks: Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks Colic expletion of the course, the students will be abl	Course Object	ives	
To introduce the fundamental concepts relevant to different linear factor models and regularization. To enable the students to understand convolutional neural networks and its applications. Unit Number Course Content UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Autoencoders and relation to PCA, Regularization in autoencoders, Sparse autoencoders, Contractive autoencoders UNIT-04 Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout, Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization UNIT-05 Convolutional Neural Networks: Convolution Neural Networks Course Outcomes Upon successful completion of the course, the students will be able to CO1: Select and implement machine learning techniques that are suitable for applications under consideration. CO2: Perform expirements using deep learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing. Books and References 1. Deep Learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing.	 To impart k 	nowledge about the concepts of deep learning in data analysis.	
To enable the students to understand convolutional neural networks and its applications. Unit Number Course Content Lectures UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis Principal Component Analysis and its interpretations, Singular Value Decomposition, Autoencoders, Contractive autoencoders Sparse autoencoders, Contractive autoencoders UNIT-04 Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization UNIT-05 Convolutional Neural Networks: Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks Upon successful completion of the course, the students will be able to CO1: Select and implement machine learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing. Books and References 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	To introduc	e the fundamental concepts relevant to different linear factor models and regularization.	
Unit Number Course Content Lectures UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation 08L UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) 08L UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders 06L UNIT-04 Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization 07L UNIT-05 Convolutional Neural Networks: Convolution Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks 07L Upon succcessful completion of the course, the students will be able to C	To enable t	he students to understand convolutional neural networks and its applications.	
UNIT-01 Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts 08L Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation 08L UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) 08L UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis Principal Component Analysis and its interpretations, Singular Value Decomposition Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders 07L UNIT-04 Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization 07L UNIT-05 Convolutional Neural Networks: Convolution Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks 07L UNIT-05 Convolutional Neural Networks will be able to 07L C01: Select and implement machine learning techniques that are suitable for applications under consider	Unit Number	Course Content	Lectures
UNIT-02 Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam) 08L UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis Principal Component Analysis and its interpretations, Singular Value Decomposition Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders 06L UNIT-04 Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization 07L UNIT-05 Convolutional Neural Networks: Convolution Neural Network, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks 07L Up successful completion of the course, the students will be able to CO1: Select and implement machine learning techniques that are suitable for applications under consideration. CO2: Perform expirements using deep learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing. Books and References 1 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	UNIT-01	Introduction: History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feed forward Neural Networks Back propagation	08L
UNIT-03 Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis Principal Component Analysis and its interpretations, Singular Value Decomposition Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders 06L UNIT-04 Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization 07L UNIT-05 Convolutional Neural Networks: Convolution Neural Network, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks 07L Course Outcomes Upon successful completion of the course, the students will be able to CO1: Select and implement machine learning techniques that are suitable for applications under consideration. CO3: Understand modern notions in data analysis oriented computing. Books and References 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	UNIT-02	Optimization for Training Deep Models: Challenges in neural network optimization, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Algorithms for Adaptive learning rates (AdaGrad, RMSProp, Adam)	08L
UNIT-04 Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization 07L UNIT-05 Convolutional Neural Networks: Convolution Neural Network, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks 07L Course Outcomes Upon successful completion of the course, the students will be able to CO1: Select and implement machine learning techniques that are suitable for applications under consideration. CO2: Perform expirements using deep learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing. Books and References 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	UNIT-03	Linear Factor Models: Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis Principal Component Analysis and its interpretations, Singular Value Decomposition Autoencoders and relation to PCA, Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders	06L
UNIT-05 Convolutional Neural Networks: Convolution Neural Network, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks 07L Course Outcomes Upon successful completion of the course, the students will be able to CO1: Select and implement machine learning techniques that are suitable for applications under consideration. 07L CO2: Perform expirements using deep learning algorithms for real world data. 07L CO3: Understand modern notions in data analysis oriented computing. 07L Books and References I. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	UNIT-04	Regularizations: Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout. Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch, Normalization	07L
Course Outcomes Upon successful completion of the course, the students will be able to CO1: Select and implement machine learning techniques that are suitable for applications under consideration. CO2: Perform expirements using deep learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing. Books and References 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	UNIT-05	Convolutional Neural Networks: Convolution Neural Network, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks	07L
Upon successful completion of the course, the students will be able to CO1: Select and implement machine learning techniques that are suitable for applications under consideration. CO2: Perform expirements using deep learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing. Books and References 1. 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	Course Outco	mes	
 CO1: Select and implement machine learning techniques that are suitable for applications under consideration. CO2: Perform expirements using deep learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing. Books and References Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press. 	Upon successf	ul completion of the course, the students will be able to	
CO2: Perform expirements using deep learning algorithms for real world data. CO3: Understand modern notions in data analysis oriented computing. Books and References 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	CO1: Selec	t and implement machine learning techniques that are suitable for applications under consideration.	
CO3: Understand modern notions in data analysis oriented computing. Books and References 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	CO2: Perfo	rm expirements using deep learning algorithms for real world data.	
Books and References 1. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	CO3: Unde	rstand modern notions in data analysis oriented computing.	
I. Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press.	Books and Re	lerences	
O Deen Learning A Dreatitioners Annreach by L Detterson A Cibean O' Deilly Medie Inc.	1. Deep	Learning by I. Goodfellow, Y. Benglo, A. Courville, MIT Press.	
 Deep Learning, A Fractitioners Approach by J. Patterson, A. Gibson, U. Kelliy Media Inc. Neural Networks and Deep Learning: A Textbook by C.C. Agganval, Springer International Publishing 	Z. Deep	Learning, A Fractitioners Approach by J. Fatterson, A. Gibson, U. Kelliy Media Inc.	

Course Na	me: Financial Mathematics	
Course Co	de: MA-461	
Course Typ	pe: Professional Elective-IV	
Contact Ho	purs/Week: 3L	Course Credits: 03
Course Ob	pjectives	
 To de specificadvante 	etermine and select the most appropriate standard mathematical, statistical and computing metho ying mathematical problems in banks and other financial institutions through a critical understance stages of these methods.	ods appropriate for ding of the relative
 To de 	velop extensions to these methods appropriate for the solution of non-standard problems.	
To un	dertake a piece of directed research in mathematical finance.	
Unit Num	ber Course Content	Lectures
UNIT-0	Basics of Financial Markets: Introduction and main theme of mathematical finance, financial markets and terminology, time value of money, interest rate, discount rate, bonds and bonds pricing, yield curves, duration and convexity, term structure of interest rates, spot and forward rates, net present value, net future value, financial instruments, underlying and derivative securities, types of derivatives, options, forwards, futures, swaps, concept of arbitrage.	06L
UNIT-02	2 Portfolio Modeling and Analysis: Portfolios, returns and risk, risk-reward analysis, asset pricing models, mean variance portfolio optimization, Markowitz model and efficient frontier calculation algorithm, Capital Asset Pricing Models (CAPM).	08L
UNIT-0	3 Probability Essentials: Probability spaces, filtrations as information content, random variables, conditional expectations, Definition and classification of random processes, martingales.	06L
UNIT-04	4 Discrete-Time Finance: Pricing by arbitrage, risk-neutral probability measures, valuation of contingent claims, and fundamental theorem of asset pricing, Cox-Ross-Rubinstein (CRR) model, pricing and hedging of European and American derivatives as well as fixed-income derivatives in CRR model, general results related to prices of derivatives.	08L
UNIT-0	5 Continuous-Time Finance: Black-Scholes-Merton model of stock prices as geometric Brownian motion, derivation of the Black-Scholes-Merton partial differential equation, the Black- Scholes formula and simple extensions of the model, self-financing strategies and model completeness, risk neutral measures, the fundamental theorems of asset pricing, continuous time optimal stopping and pricing of American options, forwards and futures in Black-Scholes- Merton model, Brownian motion, martingales.	08L
Course Ou	utcomes	
Upon succ CO1: k	essful completion of the course, the students will be able to Know the main features of models commonly applied in financial firms, be able to express these mathem o appraise their utility and effectiveness.	natically and be able
CO2: E	explain and critically appraise the rationale for the selection of mathematical tools used in the analysis of problems.	of common financial
CO3: Demonstrate an ability to select and apply numerical methods appropriate for the solution of financial problems.		
Books and 1. M 2. (Books and References Mathematics for Finance: An Introduction to Financial Engineering by M. Capinski and T. Zastawniak, Springer. Options, Futures and Other Derivatives by J. C. Hull, Pearson Education. Stackastic Calculus for Finance by S. Shrava, Saringer. 	
	Diversity and Random Processes by C. R. Crimmett and D. R. Stirzaker, Oxford University Press	
4. F	Apacure Integral and Probability M. Caninski and P.E. Konn. Springer	
6. N	Mathematics of Financial Markets by R. J. Elliott and P. E. Kopp, Springer.	

Course Name:	Data Science and Big Data Analytics
Course Code:	MA-462
Course Type:	Professional Elective-IV

Contact Hours/Week: 3L

Course Credits: 03

Course Objectives

- To impart knowledge about the unstructured data into actionable insights, improved decision making, and competitive advantage.
- To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- To learn the main concept in relation to Big Data storage and analytics, and security issues.
- To enable students to have skills that will help them to solve complex real-world problems in for decision support.

Unit Number	Course Content	Lectures
UNIT-01	Introduction: Introduction to Big Data and data science, the rising and importance of data science big data analytics in industry verticals	04L
UNIT-02	Data Analytics: Lifecycle and methodology: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, Communicating results, Deployment, Data exploration & preprocessing, Measures and evaluation	08L
UNIT-03	Data Analytics: Theory & Methods, Supervised learning: Linear/Logistic regression, Decision trees, Naïve Bayes, Unsupervised learning: K-means clustering, Association rules,	08L
UNIT-04	Unstructured Data Analytics: Technologies & tools, Text mining, Web mining	08L
UNIT-05	The Endgame: Operationalizing an Analytics project, Data Visualization Techniques, Creating final deliverables	08L
Course Outcor Upon successfu CO1: Under	nes Il completion of the course, the students will be able to rstand what Big Data is and why classical data analysis techniques are no longer adequate.	

- CO2: Understand conceptually how Big Data is stored.
- CO3: Communicate with data scientists.
- CO4: Apply several newer algorithms for Clustering Classifying and finding associations in Big Data.

Books and References

- 1. Foundations of Data Science by A/ Blum, J. Hopcroft, R. Kannan, Cambridge University Press.
- 2. Introduction to Linear Regression Analysis by Douglas C. Montgomery, E.A. Peck, G.G. Vining, Wiley.
- 3. Statistical Inference by P. J. Bickel , K. A. Docksum, Prentice Hall.
- 4. Introduction to Machine Learning by A. Smola , S.V.N. Vishwanathan. Cambridge University Press.
- 5. Introduction to Machine Learning: E. Alpaydın, Prentice Hall of India.
- 6. Data Mining Concepts and Techniques by J. Han, M. Kamber, J. Pei, Morgan Kaufmann Publishers.

Course Name:	Software Engineering	
Course Code:	MA-463 Drofossional Elective IV	
Contact Hours/	Maak: 3	Course Credits: 03
Course Object		
 This course 	e covers practices which are applied during software development	
 These pract 	tices help in developing large size and complex software.	
With conce	pots and knowledge gained from this course, one can easily become part of industrial software prod	uction.
Unit Number	Course Content	Lectures
UNIT-01	Introduction to Software Engineering and Software Process: Introduction to Software Engineering: Program Vs Software; Characteristics of Software; Evolution of Software Engineering, Software categories, Software Development life cycle, Software Quality. Software Development Processes: Waterfall model, Incremental Models – Iterative Model and RAD Model, Evolutionary Models – Prototype and Spiral Model, Component Based Development,	09 L
	Unified Process, Rapid Software Development.	
UNIT-02	Software Metrics, Requirement Engineering and Software Planning: Introduction: Software Measurement and Metrics, Software Quality Concepts, Requirement Engineering: Activities and approaches, Software Requirement specification; Software sizing approaches: Size oriented metrics, Function oriented metric, and evaluation techniques. Software Project Planning: Cost Estimation and Evaluation techniques.	07L
UNIT-03	Software Design: Introduction to Software Design: Objectives and Principles, Module level concepts Coupling and Cohesion, Design notation and specification; Architectural Design, Component Level Design, Interface Design; Structured Design Methodology, Design Heuristics, Verification. Concepts of Object Oriented Design.	07L
UNIT-04	Coding and Testing: Coding: Programming practices and styles. Testing: Introduction to software testing, Testing Fundamentals, Test cases and test criteria. Black box testing, White box testing: Structural testing, Code Verification, Code Coverage and Cyclomatic Complexity.	07L
UNIT-05	Software Quality Assurance: Quality Assurance Plans, Project Monitoring Plans, Risk Management, Software Reliability, Software Maintenance, Software Quality Assurance & International Standards, Clean Room Software Engineering, CASE Tools.	06 L
Course Outcon	mes	
Upon completin CO1: Get fa princi	ng the course, the student will be able to: amiliar with various software development process models, requirement engineering concepts a ples.	and software desigr
CO2: Unde CO3: Unde	rstand software project metrics, quality concepts and estimate effort in software development. rstand software design and principles.	
CO4: Unde	rstand coding practices, styles and software testing approaches.	
CU5: Devel	iop software cooperatively in a team with an understanding about software risk.	
1. Roger S. Pre 2. Pankaj Jalote 3. Fairley, R.E. 4. Sommerville	rerences essman, "Software Engineering: A Practitioner's Approach", 7th International edition, Mc Graw Hill, 2 e, "An Integrated Approach to Software Engineering", Narosa publishing House, New Delhi, 1995. 3 "Software Engineering Concepts", McGraw Hill, 1992. "Software Engineering" Addison Wesley, 1999	2009 2.

Course Name	: Topology	
Course Code	MA-464	
Course Type:	Professional Elective-IV	
Contact Hours	s/Week: 3L	Course Credits: 03
Course Obje	ctives	
 To impart 	knowledge about the introduction to theory of topological spaces with emphasis on those topics	that is important to
higher ma	thematics.	
 To introdu 	ice the fundamental concepts relevant for the student to understand the basic concept of topology	
 To enable 	e the students to understand properties of continuous mapping, selected type of topological spac	e (compact space,
connected	d space, etc.) and some basic theorem on topology.	
Unit Numbe	r Course Content	Lectures
UNIT-01	Introduction: Finite, countable, uncountable sets, functions, relations, axiom of choice, Zorn's	03L
	Lemma	
UNIT-02	Topological Spaces and Continuous Functions: Definition and examples of metric space,	10L
	Definition and examples of topological spaces, types of topologies, Subspaces and relative	
	topology, Hereditary	
UNIT-03	Base and Some Topological Spaces: Base and sub base for topology, order topology, product	04L
	topology. T_0, T_1, T_2 —spaces and its characteristics properties.	
UNIT-04	Countability and Separation Axioms: Countability axioms, separation axioms, regular and	12L
	normal spaces, Urysohn's Lemma, Urysohn Metrization Theorem, Tietze Extension Theorem,	
	Tychonoff Theorem.	
UNIT-05	Connectedness and Compactness: Separated sets, connected and disconnected set,	07L
	Connected and compactness space and their properties, Bolzano Weierstrass property.	
Course Outc	omes	
Upon success	sful completion of the course, the students will be able to	
CO1: Ider	ntify that the given family is a topology, given function is continuous and given set is open, close	d, dence, compact,
con	nected.	
CO2: Des	cribe method and techniques of proving basic theorems on topological spaces and continuous mappi	ng.
CO3: Know the important of topology in Mathematics and its applications in physics, biology and human science.		
Books and References		
1. Iop	ology by J. R. Munkres, Prentice-Hall.	
2. Intr	oduction to Topology and Modern Analysis by G. F. Simmons, McGraw Hill.	
3. Intro	Douction to Topology by T. W. Gamelin and K. E. Greene, Dover Publications.	
4. INTR	ouction to reperiogy by w. J. Mansheid, D. Van Nostrand Co., Inc., Princeton.	
C. Intro	outclion to General Topology by N. D. Joshi, Wiley Eastern Ltu.	
o. Intr	Dauction to repelogy by B. Mendelson, Dover Publications.	

Course Name	e: Statistical Quality Control	
Course Code	: MA-370	
Course Type	: Open Elective-I	
Contact Hour	s/Week: 3L	Course Credits: 03
Course Obje	ctives	
To unde	rstand the basic concepts of quality monitoring.	
 To under 	rstand the statistical underpinnings of quality monitoring.	
To learn	various available statistical tools of quality monitoring.	
To learn	the statistical and economical design issues associated with the monitoring tools.	
To demo	onstrate the ability to design and implement these tools.	
Unit Numbe	r Course Content	Lectures
UNIT-01	Introduction: Concept of Quality – Quality movement in India – Standardization for Quality –	05L
	Quality movement - Quality management - Quality circles - Total Quality Management - ISO	
	9001; Need for SQC in industries	
UNIT-02	Process Control: Chance and assignable causes of variation - specification and tolerance	06L
	limits; process capability- Statistical basis for control charts: X-bar, R and standard deviation	
	charts - their construction and analysis	
UNIT-03	Control Charts for Attributes – p, np, c and u charts – their construction and analysis	05L
UNIT-04	Product Control: Acceptance sampling by attributes; Producer's and Consumer's risk; Notions	14L
	of AQL, LTPD and AOQL	
	Modified Control Charts for Mean: CUSUM chart – technique of V-mask – Weighted Moving	
	average charts – multivariate control charts – Hotelling's T ² control charts and Economic design	
	of X-bar chart	
UNIT-05	Sampling Plans: OC, AOQ, ASN, ATI curves for Single and double sampling plans – Concept	06L
	of Sequential sampling plan for attributes.	
Course Outo	comes	
Upon succes	sful completion of the course, the students will be able to	
CO1: Un	derstand the philosophy and basic concepts of quality improvement.	
CO2: De	monstrate the ability to use the methods of statistical process control.	
CO3: De	monstrate the ability to design, use, and interpret control charts for variables.	
CO4: Per	form analysis of process capability and measurement system capability.	
CO5: De	sign, use, and interpret exponentially weighted moving average and moving average control charts.	
Books and F	References	
1. Intr	oduction to Statistical quality control by D.C. Montgomery, John Wiley & Sons	
2. Fur	ndamentals of Applied Statistics by S.C. Gupta and V.K. Kapoor, Sultan Chand and Sons.	
3. Pro	cess Quality Control by E.R. Ott, Mc Graw Hill.	

Course Name:	Applied Time Series Analysis
Course Code:	MA-371
Course Type:	Open Elective-I
Contact Hours/We	eek: 3L

Course Credits: 03

Course Objectives

- To impart knowledge about the areas of practical time series statistics. •
- To apply the concepts of practical time series statistics to real data sets. • .
 - To enable the students to assimilate data applied to real, scientific and interesting problems

To enable the stadents to assimilate data applied to real, solentino and interesting problems.		
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Components of time series, trend, periodic changes, irregular component, analysis of	06L
	time series, uses of time series, time series decomposition.	
UNIT-02	Measurement of Trend: Graphic method, Method of semi-averages, method of curve fitting by	06L
	principles of least squares, growth curves and their fitting, moving average method.	
UNIT-03	Measurement of Seasonal Fluctuations: Method of simple averages, ratio to trend method, ratio to	06L
	moving average method, link relative method, measurement of cyclic movement.	
UNIT-04	Auto - Regression Series: First order auto - regression (Markoff's Series), Second order	06L
	autoregressive series (Yule's Series), General auto - regression, auto - correlation and correlogram,	
	random component in time series, variate difference method.	
UNIT-05	Simple Regression: Least square estimation, the coreelation coefficient, simple regression and the	12L
	correlaton coefficient, Residulas, outliers and influential observations, correlation and causation,	
	inference and forecasting with simple regression	
	The Box Jenkins Methodology: Examining correlation in time series data, stationarity of time	
	seris data, ARIMA models for time series data	
Course Outcor	nes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Undo	retand and analyze the theoretical & practical accests of time series data	

- Understand and analyze the theoretical & practical aspects of time series data. CO1:
- CO2: Understand the basic structure of time series and its components.
- CO3: Identify and decompose time series model into its components.
- CO4: Understand the genesis of the Box Jenkins Methodology and models based on it.

Books and References

- 1. Time Series Analysis: Forecasting and Control by George E.P. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, John Wiley & Sons.
- 2. Introduction to Time Series and Forecasting by P.J. Brockwell, R.A. Davis, Springer.
- 3. Time Series Analysis by J.D. Hamilton, Princeton University Press.

Course Name:	Principles of Design of Experiments	
Course Code:	MA-380	
Course Type:	Open Elective-II	0 0 10 00
Contact Hours/	Week: 3L	Course Credits: 03
Course Object	IVES	
Io impart k	nowledge about the issues and principles of Design of Experiments (DOE)	
 To introduc 	e the fundamental concepts relevant to Experimental Designs and Multiple Comparison tests	
 To enable t 	he students to understand the factors that cause the Factorial Experiments and block designs	-
Unit Number	Course Content	Lectures
UNIT-01	Basic Principles for Designing Statistical Experiments: Randomization, Replication and local	08L
	control techniques - Determination of experimental units and notion of experimental error - Analysis of	
	variance with one-way and two-way classifications - Models and Methods of analysis.	
UNIT-02	Experimental Designs: Completely Randomized Design (CRD) and Randomized Block Design	10L
	(RBD)- Models and estimates of parameters and their standard error - Analysis of data arising from	
	such designs, Analysis when one or two observations are missing. Latin Square Design (LSD) -	
	Model – Estimation of parameters – Method of analysis – Missing Plot technique in LSD	• "
UNIT-03	Multiple Comparison lests: Least Significant Difference, Student-Newman–Keuls test,	04L
	Duncan's Multiple Range test, Tukey's test.	
UNIT-04	Factorial Experiments: 2 ² , 2 ³ and 3 ² designs; estimation of main effects and interactions and	04L
	their standard errors	
UNIT-05	Balanced Incomplete Block Design (BIBD): Types of BIBD – Simple construction methods –	10L
	Concept of connectedness and balancing – Intra Block analysis of BIBD – Recovery of Inter	
	Block information – Partially Balanced Incomplete Block Design with two associate classes –	
	intra block analysis only - Split plot and strip plot design and their analysis.	
Course Outco	mes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Identi	ty the experimental designs in CRD, RBD and LSD	
CO2: Desci	ribe the relationship among designs and factorial experiments	
CO3: Apply	principles of multiple comparison tests and block designs with examples	
Books and Re	rerences	
1. Desig	in and Analysis of Experiments by M.N. Das, M.N., N.C. Giri, Wiley eastern.	
2. Desig	in of Experiments by D.C. Montgomery, John Wiley and Sons.	
3. An In	troduction to Linear Statistical Models by F.A. Graybill, Mc-Graw Hill.	
4. An U	unine of statistical theory by A.M. Goon, M.K.Gupta, B. Dasgupta, world Press Calcutta.	
5. Funda	amentais of Applied Statistics by S.C. Gupta, V.K. Kapoor, Suitan Chand & Sons.	
o. Applie	ed Statistics by P. Mukhopadhyay, Books and Allied (P) Ltd.	

6. Applied Statistics by P. Mukhopadhyay, Books and Allied (P) Ltd.

Cou	Irse Name:	Numerical Methods for Partial Differential Equations	
Cou	Irse Code:	MA-381	
Cou	irse Type:	Open Elective-II	0 0 111 00
Con	tact Hours/V	Veek: 3L	Course Credits: 03
Cou	Irse Objecti	Ves	
•	To impart kr	nowledge about the various numerical methods to solve the partial differential equations.	
•	To enable th	he students to examine the compatibility, convergence and stability of the numerical schemes.	
•	Detailed stu	dy of finite difference methods to solve PDEs of parabolic, elliptic and hyperbolic type.	
Un	it Number	Course Content	Lectures
ι	UNIT-01	Introduction to Partial Differential Equations: Classification of PDE, Standard forms of PDE, Boundary conditions.	04L
l	UNIT-02	Introduction of Numerical Methods for Partial Differential Equations: Taylor's series expansion, Analysis of truncation error, Finite difference approximation, Order of approximation, Polynomial fitting and one sided approximation, Finite difference method, finite element method, quadrature method, Exposure to MATLAB and computational experiments based on algorithms.	12L
l	UNIT-03	Solution of Parabolic Equation: Explicit and Implicit scheme for 1D parabolic equation, Compatibility, convergence and stability conditions, Derivative boundary condition with example, Explicit and implicit scheme for 2D parabolic equation, Alternating direction implicit (ADI) Scheme for 2D parabolic equation.	08L
ι	UNIT-04	Solution of Elliptic Equation: Solution of Laplace equation using standard five point formula and diagonal five point formula, Successive over relaxation (SOR) and Alternating direction implicit (ADI) methods for elliptic equation.	06L
ι	UNIT-05	Solution of Hyperbolic Equation: Explicit and implicit scheme for hyperbolic equations, Stability analysis of scheme, Characteristics of PDE and their significance, Method of characteristic, Lax-Wendroff's method, Wendroff's method, Stability analysis of methods.	06L
Cou	urse Outcon	nes	
Upo	on successfu	I completion of the course, the students will be able to	
CO	1: Use nu	merical methods to obatin the approximate solutions of initial and bondary value problems	
CO2	2: Classify	y PDE's and to obatin their numerical solutions	
CO3	3: Assess	the compatibility, convergence and stability of numerical schemes	
Boo	oks and Ref	erences	
1.	Applied num	erical analysis by C.F. Gerald and P.O. Wheatley, Pearson.	
2.	Numerical s	olution of partial differential equations: Finite Difference Method by G.D. Smith, Clarendon press.	
3.	Numerical a	nalysis of differential equations by M.K. Jain, Wiley Earstern.	
4.	Computation	nal methods in ordinary differential equations by J.D. Lambert, Wiley.	
5.	Ine Finite D	htterence Method in Partial Differential Equations by A.R. Mitchell and R. Wait,, John Wiley & Sons	
b.	Numerical N	ietnods for Engineers by S.C. Chapra and R.P. Canale, McGraw Hill Education.	
1.	Numerical A	nalysis of Partial Differential Equations by C.A. Hall and T. A. Porsching, Prentice Hall.	

7. Numerical Analysis of Partial Differential Equations by C.A. Hall and T. A. Porsching, Prentice Hall.