Course Curriculum (Course Structure and Syllabi) for Bachelor of Technology in Electronics and Communication Engineering (Second Year Onwards)

Department of Electronics and Communication Engineering National Institute of Technology Hamirpur Hamirpur – 177 005 (India)

Second Year														
3 rd Semester								4 th Semester						
SN	Code	Subject	L	Т	Ρ	Credits	SN	Code	Subject	L	Т	Ρ	Credits	
1	HS-203	Organizational Behaviour	3	0	0	3	1	MA-203	Engineering Mathematics-III	3	1	0	4	
2	EC-211	Digital Electronics and Logic Design	3	1	0	4	2	EC-221	Linear Integrated Circuits	3	1	0	4	
3	EC-212	Analog Electronics	3	1	0	4	3	EC-222	Analog Communication Systems	3	1	0	4	
4	EC-213	Communication Theory	3	1	0	4	4	EC-223	Electromagnetic Field Theory	3	1	0	4	
5	CS-201	Data Structures	3	1	0	4	5	EC-224	VLSI Technology	3	0	0	3	
6	EC-214	Digital Electronics and Logic Design Lab	0	0	2	1	6	EC-225	Linear Integrated Circuits Lab	0	0	2	1	
7	EC-215	Analog Electronics Lab	0	0	2	1	7	EC-226	Analog Communication Lab	0	0	2	1	
8	CS-202	Data Structures Lab	0	0	2	1	8	EC-227	Circuit Design and Simulation lab	0	0	2	1	
		Total Hours	= 25			22			Total Hours =	25			22	

						Thir	'd Yea	ır					
5 th Semester								6 th Semester					
SN	Code	Subject	L	Т	Ρ	Credits	SN	Code	Subject	L	Т	Ρ	Credits
1	EC-311	Microprocessor Architecture and Applications	3	1	0	4	1	EC-321	Microcontroller and Embedded Systems	3	1	0	4
2	EC-312	Digital Communication and Systems	3	1	0	4	2	EC-322	Wireless Communication	3	1	0	4
3	EC-313	Digital Signal Processing	3	1	0	4	3	EC-323	VLSI Design Techniques	3	1	0	4
4	EC-314	Microwave Devices and Systems	3	0	0	3	4	EC-324	Antenna and Wave propagation	3	0	0	3
5	OET	Open Elective-I	3	0	0	3	5	OET	Open Elective-II	3	0	0	3
6	EC-315	Digital Communication Lab	0	0	2	1	6	EC-325	Microprocessor and Microcontroller Lab	0	0	2	1
7	EC-316	Microwave Devices and Systems Lab	0	0	2	1	7	EC-326	VLSI Design Lab	0	0	2	1
8	EC-317	Digital Signal Processing Lab	0	0	2	1	8	EC-329	Seminar	0	0	2	1
		Total Hours	= 24			21			Total Hours =	= 24			21

						Fo	urth Y	′ear					
		7 th Semester					8 th Semester						
SN	Code	Subject	L	Т	Ρ	Credits	SN	Code	Subject	L	Т	Ρ	Credits
1	EC-411	Control System	3	0	0	3	1	HS-404	Engineering Economics and Accountancy	3	0	0	3
2	EC-412	Optical Communication Systems and Networks	3	0	0	3	2	EC-421	Data Communication and Computer Networks	3	0	0	3
3	DET	Professional Elective-l	3	0	0	3	3	DET	Professional Elective-III	3	0	0	3
4	DET	Professional Elective-II	3	0	0	3	4	DET	Professional Elective- IV	3	0	0	3
5	EC-418	Industrial Training Presentation	0	0	2	1	5	EC-428	General Proficiency	0	0	0	1
6	EC-419	Major Project (Stage-I)	0	0	12	6	6	EC-429	Major Project (Stage-II)	0	0	12	6
		Total Hours	s = 26	;		19			Total Hours =	24			19

Semester Wise Credits									
Semester	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	Total
Credits	24	24	22	22	21	21	19	19	172
Hours/week	28	28	25	25	24	24	26	24	204

Professional Elective Courses

Professional Elective-I (Courses related to design, tools, techniques)

- EC-430 Signal processing for Image and Video
- EC-431 CAD of Integrated Circuits
- EC-432 Electronics Device Modeling
- EC-433 MEMS and Sensor Design
- EC-434 Advanced IC Design
- EC-435 Optimization Techniques

Professional Elective-II (Courses related to Instrumentation and Computing)

- EC-450 Electronic Measurement and Instrumentation
- EC-451 RF IC Design
- EC-452 Radar and Navigational Aids
- EC-453 Artificial Intelligence and Deep Learning
- EC-454 Reliability Engineering
- EC-455 Computer Architecture and Organization

Professional Elective-III (Courses related to Communication Engineering)

- EC-440 Spread Spectrum and CDMA
- EC-441 Wireless Sensor Networks
- EC-442 Satellite Communication
- EC-443 Mobile Communication
- EC-444 Information Theory and Coding
- EC-445 Internet of Things

Professional Elective-IV (Courses related to VLSI Devices and Circuits)

- EC-460 FPGA and SoC Design
- EC-461 Low Power VLSI Design Techniques
- EC-462 VLSI Testing
- EC-463 VLSI Interconnects and Packaging
- EC-464 Nano Electronics: Devices and Materials
- EC-465 Electromagnetic Interference and Compatibility

Open Elective Courses

Open Elective-I

EC-370 MEMS Design

Open Elective-II

EC-380 Microcontroller and its Applications

Organizational Behaviour	
HS-203	
Core	
ek: 3L	Course Credits: 03
	Organizational Behaviour HS-203 Core ek: 3L

Course Objectives

- To impart knowledge about the behavioural aspects related to professional organizations
- To introduce the fundamental concepts relevant to understanding of individual & group behavior in the organization
- To enable the students to understand the applied organizational themes like perception, motivation, interpersonal relationships, group dynamics, leadership theories, role of power & policies in organizational context, conflict and negotiation, organizational diversity, dynamics of personality, attitude and job satisfaction, etc.

Unit Number	Course Content	Lectures
UNIT-01	Organizational Behavior (OB): Concept, nature, characteristics, conceptual foundations, determinants and importance, management functions, role & skills, disciplines that contribute to the field of OB. Challenges & Opportunities for OB, diversity in Organizations, attitudes & lab	04L
	satisfaction.	
UNIT-02	Perception : Concept, nature, process, importance, management and behavioral applications of perception. Personality: concept, nature, types and theories of personality shaping. Learning; concept and theories of learning.	08L
UNIT-03	Motivation: concept, principles, theories-content, process & contemporary, Monetary and non- monetary motivation, applications of motivation. Leadership: Concept, functions, styles, and theories of leadership- trait, behavioural, and situational.	06L
UNIT-04	Group and Interpersonal Relationship: Analysis of Interpersonal Relationship, developing interpersonal relationship, Group Dynamic: Definition of Group, stages of Group Development, Punctuated Equilibrium Model, Group Structure, Group Decision Making, understanding work teams.	05L
UNIT-05	Organizational Power and Politics: concept of power, structure of power, classification of power, contrasting leadership & power, dependence a key to power, causes & consequences of political behaviour. Organizational conflict: view of conflict, conflict process, negotiation & bargaining strategies.	06L
UNIT-06	Conflict and Negotiation: conflict definition in conflict thought: Traditional view, the Human relation view, interactionist view. Functional versus dysfunctional conflict, conflict process. Negotiation Bargaining strategies, the negotiation process and issues in negotiation.	07L
Course Outcor	nes	
Upon successfu	Il completion of the course, the students will be able to	
CO1: Identify	the challenges of the present organization	
CO2: Describe	e the organizational system a principles of ergenizational behavior to insulate the babit of team work and which is essential for	the exercise
CO3: Apply th	e principles of organizational behavior to inculcate the habit of team work and which is essential for the role of psychological and social principal in improvement of efficiency as well as quality of empo	the organization
Books and Ref	rences	
1. Organizati	onal Behavior by Robbins, S.P., Prentice Hall of India.	
2. Organizati	onal Behavior by Luthans F., McGraw-Hill.	

3. Human Behavior at Work: Organizational Behavior by Davis K., Tata McGraw-Hill.

Course Name: Digital Electronics & Logic Design Course Code: EC-211 Course Type: Core Contact Hours/Week: 3L + 1T

Course Credits: 04

Course Objectives

- To impart knowledge about the concept of digital design, number system and codes.
- To introduce the fundamental concepts related to design of combinational logic circuits.
- To enable the students to understand the design of Sequential Circuits.

Unit Number	Course Content	Lectures
UNIT-01	Introduction: Analog versus Digital. Analog to Digital and Digital to Analog converter circuits:	08L
	Number systems and their inter-conversion, Binary Arithmetic (Addition, Subtraction, Multiplication	
	and Division), Diminished radix and radix compliments; BCD codes, Excess-3 code, Gray code,	
	Hamming code, Error Detection and Correction.	
UNIT-02	Logic Gates and Logic Families: Digital Logic Gates, Various Logic Families: RTL, DTL, TTL and	06L
	ECL; Working and their characteristics; MOS and CMOS devices.	
UNIT-03	Combinational Logic Design:Boolean Algebra, Basic Theorems and Properties of Boolean	08L
	Algebra, Minimization of Logical functions, Karnaugh- Map method, Sum of Products and Product of	
	Sums Simplification, NAND and NOR implementation, Incompletely Specified functions, VEM method,	
	Tabulation method, Determination of Prime implicants, Selection of Essential Prime implicants,	
	Iterative Consensus & Generalized Consensus method for minimization of Multiple Output Switching	
	functions, Determination of Prime implicants, Selection of Essential Prime implicants and finding a	
	minimal cover, Design of Combinational circuits with examples.	
UNIT-04	MSI and PLD Components: Binary Adder and Subtractor; Decoders and Encoders;	06L
	Multiplexers and DE-Multiplexers circuits; Read Only Memory, Programmable Logic Arrays,	
	Programmable Array Logic; Implementation of Combinatorial Logic using these devices.	
UNIT-05	Sequential Logic Design: Introduction and Classification of Sequential circuits, Flip-flops: Truth	08L
	Table & Excitation Table of flip-flops, Interconversion of flip-flops, Design of Synchronous &	
	Asynchronous Sequential circuits, Registers and Counters,	
Course Outcon	nes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Understa	and about the concept of digital system.	
CO2: Apply pr	inciples of minimization techniques to simplify digital functions.	
CO3: Design a	and analyse the combinational electronic circuit based on digital logic.	
CO4: Design a	and analyse the sequential electronic circuit based on digital logic.	
Books and Refe	erences	
1. Digital Desig	gn: M. Morris Mano, Prentice Hall of India.	
2. Digital Princ	aple and Applications: Malvino and Leach, Tata Mc-Graw Hill.	
Fundamenta	als of Digital Electronics: Anand Kumar, Prentice Hall of India.	

4. Modern Digital Electronic: R.P. Jain Tata Mc-Graw Hill.

Course Name:	Analog Electronics	
Course Code:	EC-212	
Course Type:	Core	
Contact Hours/	Week: 3L + 1T Co	ourse Credits: 04
Course Object	ives	
To introduce	e the fundamental concepts relevant to bipolar junction transistor.	
To impart k	nowledge about the electrical modeling and analysis of small- and large-signal amplifiers.	
To enable t	he students to understand the factors that cause the gain to roll-off at high frequencies.	
Unit Number	Course Content	Lectures
UNIT-01	Low Frequency Transistor Amplifier: Equivalent Circuit of BJT using h-parameter for CB, CE	05L
	and CC & configuration, Calculation of Transistor Parameter for CB, CE & CC using h-	
	parameters, Comparison of Transistor Amplifier Configuration	
UNIT-02	Multistage Amplifier: General Cascaded System, RC Coupled Amplifier and its Frequency	05L
	Response, Merits and Demerits, Cascade Amplifier, Darlington Compound Configuration,	
	Multistage Frequency Effect	
UNIT-03	High Frequency Response of Transistor Amplifier: High Frequency Model for CE	06L
	Configuration, Approximate CE High Frequency Model with Resistive Load, CE Short Circuit	
	Current Gain, HF Current Gain with Resistive Load	
UNIT-04	Large Signal Amplifier: Analysis and Design of class A, B, AB, C Amplifiers, Push-pull	05L
	Amplifiers, Transformer Less Output Stages, Distortion Calculations	
UNIT-05	Tuned Amplifier: General Behavior of Tuned Amplifiers, Series and Parallel Resonant Circuit,	05L
	Calculations of Circuit Impedance at Resonance, Variation of Impedance with Frequency, Q	
	Factor of a Circuit & Coil, Bandwidth of Series and Parallel Resonant Circuit, Single Tuned	
	Amplifiers, Voltage Gain and Frequency Response of Single Tuned Amplifiers, Double Tuned	
	Amplifiers	
UNIT-06	Feedback Amplifier: Feedback concept, Characteristics of Negative and Positive Feedback,	05L
	Effect of Negative and Positive Feedback on Input Impedance, Output Impedance, Gain, Noise	
	and Frequency Response	
UNIT-07	Oscillators: Classification of Oscillators, Frequency Stability of Oscillatory Circuits, Tuned based	05L
	Oscillators, Hartley Oscillator, Colpitt Oscillators, Clapp Oscillator, Crystal Oscillator, Phase Shift	
	Oscillator and Wien Bridge Oscillator	
Course Outco	mes	
Upon successfu	Il completion of the course, the students will be able to	
CO1. Develop	The ability to analyze and design analog electronic circuits using discrete components	
CO2. Undersit	and the use of small-signal models to predict gain and behavior in transistor amplifier	
CO3: Describe	uned amplifiers and apply them in a communications system	
Books and Ref		
1 Integrated E	Fleetronics: Analog and Digital Circuits and Systems by J. Millman and C. Halkias. McCraw Hill. Inc.	
2 Flectronic	evices & Circuit Theory by R. Boylestad and L. Nashelsky, Pearson	
3 Microelectro	nnic Circuits hv A. Sedra and K. Smith. Oxford University Press	
4 Electronic E	Fundamental Applications: Integrated and Discrete Systems by J.D. Ryder. Prentice Hall	
	undamental Applications. Integrated and Discrete Oystems by 0.D. Tyder, Trentice Hall.	

Course Name:	Communication Theory
Course Code:	EC-213
Course Type:	Core
Contact Hours/We	ek: 3L + 1T

Course Credits: 04

Course Objectives

- To understand basic components of communication systems.
- To prepare mathematical background for communication signal analysis.
- To analyze signals in presence various types of noise and estimation of channel capacity.

Unit Number	Course Content	Lectures
UNIT-01	Frequency and Time Domain Representation and Analysis: Introduction to Information,	10L
	Messages & Signals, Classification of Signals., The Discrete and Continuous Spectrum, Power	
	Spectrum, Energy Density Spectrum, Dirac Delta Functions, Sampling Theory and	
	Approximations, Convolution of Signals, LTI Systems.	
UNIT-02	Random Signal Theory : Discrete Probability Theory, Continuous Random Variables, Statistically	10L
	Independent Random Variables, Probability Density Functions of Sums, Transformation of Density	
	Functions, Ergodic Process, Correlation Functions, Spectral Density and White Noise.	
UNIT-03	Noise: Atmospheric, Thermal, Shot and Partition noise, Noise Figure and Experimental Determination	05L
	of Noise Figure, Shot Noise In Temperature Limited Diode and Space Charge Limited Diodes, Pulse	
	Response and Digital Noise.	
UNIT-04	Transmission Through Networks: Networks with Random Input, Auto-correlations, Spectral	05L
	Density and Probability Density Input-output Relationships, Optimum System and Non-linear	
	Systems, Maximum Criterion, Equivalent Noise Bandwidth.	
UNIT-05	Basic Information Theory: Definition of Information, Units of Information, Entropy, Uncertainty	06L
	and Information Rate of Communication, Redundancy, Relation Between System Capacity and	
	Information Content of Messages, Shannon's Theorem, Discrete Noisy Channel, Channel	
	Capacity for Different Discrete Channels.	
Course Outcor	nes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Perform	n the time and frequency domain analysis of the signals in a communication system.	
CO2: Analyze	the performance of communication system and need of information theory for information transfer.	
CO3: Select th	ne blocks in a design of communication system and system capacity.	
Books and Ref	ierences	
1. Elements of	Communication Theory by J.C. Hancock, McGraw-Hill Education Publisher.	

2. Principals of Communication System by Taub & Schilling, McGraw-Hill Education Publisher.

3. Communication Systems by S. Haykin, Wiley Publication.

Сс	ourse Name:	Data Structures					
Сс	ourse Code:	CS-201					
Сс	ourse Type:	Core					
Сс	ontact Hours/V	Veek: 3L + 1T	Course Credits: 04				
Co	ourse Objecti	ves					
•	To impart kr	nowledge about linear and non-linear data structures as the foundational base for computer solutior	ns to problems.				
•	To introduce	e the fundamental concepts relevant to binary trees, binary tree traversals, binary search trees a	and perform related				
	analysis to s	solve problems.					
•	To enable th	ne students to understand various types of sorting algorithms.					
U	nit Number	Course Content	Contact Hours				
	UNIT-01	Introduction: Data types, data structures, abstract data types, the running time of a program, the running time and storage cost of algorithms, complexity, asymptotic complexity, big O notation, obtaining the complexity of an algorithm.	7L				
	UNIT-02	Development of Algorithms: Notations and Analysis, Storage structures for arrays - sparse matrices - structures and arrays of structures, Stacks and Queues: Representations, implementations and applications. Linked Lists: Singly linked lists, Linked stacks and queues, operations on Polynomials, Doubly Linked Lists, Circularly Linked Lists, Operations on linked lists- Insertion, deletion and traversal, dynamic storage management – Garbage collection and compaction.	10L				
	UNIT-03	Trees: Basic terminology, General Trees, Binary Trees, Tree Traversing: in-order, pre-order and post-order traversal, building a binary search tree, Operations on Binary Trees - Expression Manipulations - Symbol Table construction, Height Balanced Trees(AVL), B-trees, B+-trees.	7L				
	UNIT-04	Graphs: Basic definitions, representations of directed and undirected graphs, the single- source shortest path problem, the all-pair shortest path problem, traversals of directed and undirected graphs, directed acyclic graphs, strong components, minimum cost spanning tress, articulation points and biconnected components, graph matching.	6L				
	UNIT-05	Sorting and Searching Techniques: Bubble sorting, Insertion sort, Selection sort, Shell sort, Merge sort, Heap and Heap sort, Quick sort, Radix sort and Bucket sort, Address calculation, Sequential searching, Binary Searching, Index searching, Hash table methods.	6L				
Сс	ourse Outcor	nes					
	 Upon successful completion of the course, the students will be able to CO1: Interpret and compute asymptotic notations of an algorithm to analyze the time complexity. CO2: Use of linear and non-linear data structures as the foundational base for computer solutions to problems. CO3: Demonstrate the ability to implement various types of static and dynamic lists. CO4: Implement binary trees, binary tree traversals, binary search trees and perform related analysis to solve problems. CO5: Implement various types of sorting algorithms. Books and References 1 An Introduction to Data Structures with applications by J.P. Tremblay and P.G. Sorenson. Tata McGraw Hill						
1. 2. 3. 4. 5.	 An Introduction to Data Structures with applications by J.P. Tremblay and P.G. Sorenson, Tata McGraw Hill. Data structures, Algorithms ad Applications in C++ by Sartaj Sahni, WCB/McGraw Hill. Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft, Addison Wesley. Data Structures using C by Y. Langsam, M. J. Augenstein and A. M. Tenenbaum, Pearson Education. Data Structures – A Pseudocode Approach with C by Richard E. Gilberg and Bebruiz A. Ecrouzan. Thomson Brooks (Cole 						

Course Name: Digital Electronics and Logic Design Lab

Course Code: EC-214

Contact Hours/Week: 2P

Course Objectives

- Familiarization with digital integrated circuits and equipment's.
- Implementation and design of combinational logic circuits using different gates.
- To understand concepts of sequential circuits and to analyze and design sequential circuits.

List of Experiments

- 1. To study about the logic gates and verify their truth table.
- 2. Realization of AND and OR gates using
 - (i) Diodes and resistors.
 - (ii) Universal gates
- 3. Design and implement half adder and full adder circuits and verifies the truth table using logic gates.
- 4. Design and implement half subtractor and full subtractor circuits and verifies the truth table using logic gates.
- 5. Design and implement 4-bit binary to gray code converter and gray to binary code converter circuits.
- 6. Design and implement BCD to excess-3 code converter and excess-3 to BCD code converter.
- 7. Design and implement
- (i) 2-Bit magnitude comparator using basic gates
 - (ii) 8-Bit magnitude comparator using IC 7485
- 8. Design and implement multiplexer and demultiplexer using logic gates and study of IC 74150 and IC 74154.
- 9. Design and implementation of the function using multiplexer
 - (i) $F(A,B,C)=\Sigma m(1,2,5,6)$
 - (ii) F(A,B,C)=Σm(0,2,5,6,7)
- 10. Design and implement encoder and decoder using logic gates and study of IC 7445 and IC 74147.
- 11. Realization of SR, JK, D and T flip flop using gates.
- 12. Design and implement 3-bit synchronous up counter.
- 13. Design and implement 3-bit asynchronous up/down counter.
- 14. Design BCD to seven segment display with decoder Using IC 7447.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Understand the digital signals, applications of ICs and logic circuits.

CO2: Develop skills for designing combinational logic circuits and their practical implementation on breadboard.

CO3: Analyze, design and implement sequential logic circuits.

Course Name: Analog Electronics Lab

Course Code: EC-215

Contact Hours/Week: 2P

Course Objectives

- To provide skills for designing various oscillator circuits
- To provide skills for understanding frequency stability in amplifiers
- To enable the students to plot the characteristic property of various transducers
 - 1. To study the working of Hartley Oscillator and measure the frequency of oscillations
 - 2. To study the working of Colpit's Oscillator and measure the frequency of oscillations
 - 3. To study the functioning of Crystal Oscillator and measure the frequency of oscillations
- 4. To study the frequency response of two-stage RC coupled amplifier and find the voltage gain
- 5. To identify the type of feedback used in an amplifier and determine the voltage gain
- 6. To study the push-pull amplifier and plot the frequency response
- 7. To study the transformer coupled amplifier and determine the frequency response
- 8. To study the voltage gain and frequency response of FET amplifier
- 9. To study the astable, monostable and bistable multivibrators and their timing parameters.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Analyze and design analog electronic circuits using discrete components
- CO2: Design and implement an analog circuit project application utilizing knowledge and skills learned
- CO3: Establish the biasing of an FET amplifier
- CO4: Calculate power efficiency of large-signal amplifier

Course Name: Data Structures Lab Course Code: CS-202

Contact Hours/Week: 2P

Course Objectives

- To provide skills for designing & writing algorithms.
- To provide skills for writing C/C++ programs.
- To enable the students to debug programs.

List of Experiments

- 1. Write a program to sort an array (make a dynamic array) using Bubble sort. Use 1-bit variable FLAG to signal when no interchange take place during pass. If FLAG is 0 after any pass, then list is already sorted and there is no need to continue.
- 2. WAP to search an ITEM (integer) in an array using binary search, if FOUND then delete that item from array and if NOT FOUND than insert that item in kth position (Input "k" from user).
- 3. WAP to enter records of Five students, which should contain fields like roll No., name, CGPI, semester.
- a. List all record of all students having CGPI greater than k.
- b. Insert a new record of student at kth position and print the final record.
- 4. Implement linked list and insert and delete an element into the list.
- 5. Evaluate a postfix algebraic expression with the help of stack.
- 6. Implement a circular queue by adding or deleting few elements. Make sure to incorporate "Queue Empty", "Queue Full" constraints in your program.
- 7. WAP to implement Binary Search Tree with insertion and deletion operation.
- 8. Implement any one of the tree traversing techniques.
- 9. Implement various sorting algorithms like Quick sort, Merge Sort, Insertion Sort, Selection Sort etc.
- 10. Implement hashing.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: To gain knowledge of popular available data stuctures.
- CO2: To develop programming skills in students.
- CO3: To impart knowledge of syntax and semantics of basic laungages.

Со	urse Name:	Engineering mathematics-III	
Со	urse Code:	MA-203	
Со	urse Type:	Core	
Со	ntact Hours/V	Veek: 3L + 1T Course C	redits: 04
Co	urse Objecti	ves	
•	To introduce solution of lir	the fundamental concepts relevant to function of complex variable, numerical differentiation and integration and ear, non-linear and system of equations.	d numerical
•	To nave the	Idea of evaluation of real integrals using complex variable.	
	To impart kn	owledge of various numerical technique to solve ODF	
U	nit Number	Course Content	Lectures
	UNIT-01	Functions of Complex Variable	12L
		Applications of Complex Variable	
		Applications of De Molvie's theorem, Exponential, Circular, Hyperbolic and Logantinnic functions of a complex	
		variable, inverse Hyperbolic functions, Real and imaginary parts of Circular and Hyperbolic functions,	
		Summation of the series- C+IS method. Limit and derivative of complex functions, Cauchy-Riemann equations,	
		Analytic functions and its applications, Complex integration, Cauchy's theorem, Cauchy's integral formula,	
		Series of complex function, Taylor series, singularities and Laurent's series, Cauchy's residue theorem and its	
		application for the evaluation of real definite integrals.	001
	UNIT-02		06L
		Least square curve fit and trigonometric approximations, Finite differences and difference operators, Newton's	
		interpolation formulae, Gauss forward and backward formulae, Sterling and Bessel's formulae, Lagrange's	
		Interpolation.	
	UNIT-03	Numerical Integration	05L
		Integration by trapezoidal and Simpson's rules 1/3 and 3/8 rule, Romberg integration, and Gaussian quadrature	
		rule, Numerical integration of function of two variables.	
	UNIT-04	Numerical Solution of Ordinary Differential Equations	07L
		Taylor series method, Picard's method, Euler's method, Modified Euler's method, Runge-Kutta method.	
		Predictor corrector methods, Adam Bashforth and Milne's method, convergence criteria, Finite difference	
		method.	
	UNIT-05	Numerical Solution of Linear and Non Linear Equations	06 L
		Non Linear Equations: Bisection Method, Regula Falsi Method, Newton-Raphson Method, Iteration method.	
		Linear Equations: Jacobi and Gauss Seidal Iteration methods, Relaxation method.	
Co	urse Outcome	es: Upon successful completion of the course, the student will be able to:	
CO	1: Understand	and analyze the concept of Numerical Solution of Linear and Non Linear Equations, Ordinary Differential Equ	uations and
	Function of	complex variable.	
CO	2: Identify an	appropriate technique to solve the linear, non-linear equations, ordinary differential equations.	
CO	3: Formulate	the problems on related topics and solve analytically.	
CO	4: Apply the c	oncepts of linear, non-linear equations, differential equations and complex analysis in various engineering probler	ns.
CO	5: Demonstra	te the concepts through examples and applications.	
Bo	oks and Refer	rences	
1	I. Complex va	ariables and Applications: by R. V. Churchill, T. J. Brown & R. F. Verhey, McGraw Hill.	
2	2. A first cours	e in complex analysis with applications: by Dennis D. Zill & P. D. Shanahan, Jones and Bartlett.	
3	3. Numerical I	Methods for Scientific and Engineering Computations: by M. K. Jain, S. R. K. Iyenger and R. K. Jain, New Age I	nternational
	Publishers,	New Delhi	
4	4. Numerical N	Methods for Engineers and Scientists (2 nd Ed.): by J D Hoffman, CRC Press.	
5	5. Numerical A	Analysis Mathematics and Scientific computing (3rd ed.): by D. Kincaid and W. Cheney, American Mathematical So	ociety.

Course Name:	Linear Integrated Circuits		
Course Code: EC-221			
Course Type:	Core		
Contact Hours/	Contact Hours/Week: 3L + 1T Course Credits: 04		
Course Object	tives		
 To im 	npart strong foundation of IC based design.		
 To in 	troduce the various applications of operational amplifiers and its integration with other devices.		
 To le 	arn circuits design using op amps for power management, signal conditioning and communication		
Unit Number	Course Content	Lectures	
UNIT-01	Differential And Cascode Amplifiers	8L	
	Emitter coupled differential amplifiers & its circuit configurations, FET differential amplifier, Differential amplifier		
	with swamping resistor, constant current bias & current mirror. Cascade differential amplifier stages. Level		
LINIT-02	Introduction to Operational Amplifiers	રા	
0111-02	The basic operational amplifier & its schematic symbol. Block diagram representation of OP-AMP. Power supply	JL	
	requirements of an OP-AMP. Evolution of OP-AMP. Specification of a typical OP-AMP/741)		
UNIT-03	The Practical On-Amn And Its Frequency Response	61	
	Input offset voltage, input bias current input offset current. Total output offset voltage, thermal drift, error voltage	02	
	variation of OP-AMP parameter with temperature & supply voltage. Supply voltage rejection ration (SVRR).		
	CMRR-Measurement of OP-AMP parameters. Frequency response of compensator networks. Open loop		
	voltage gain as a function of frequency. Slew rate, causes of slew rates and its effects in application		
UNIT-04	Operational Amplifier Configurations & Linear Application	6L	
	Open loop OP-AMP configurations- The differential amplifier, inverting amplifier, non-inverting amplifier, negative		
	feedback configurations - inverting and non-inverting amplifiers, voltage followers & high input impedance		
	configuration, differential amplifiers, closed loop frequency response & circuit stability, single supply operation of		
	OP-AMP, summing, scaling and averaging amplifier, voltage to current & current to voltage converters,		
	integrators & differentiators, logarithmic & anti logarithmic amplifiers		
UNIT-05	Active Filters & Oscillators	5L	
	Advantages of active filters, classification of filters, response characteristics of butter worth, chebyshev, causal		
	filters, first order and second order butter worth filters- low pass and high pass types. Band pass & band reject		
	filters. Oscillator principles, types of oscillators - phase shift, Wien Bridge & quadrature. Square wave, triangular		
	wave and saw tooth wave generators, voltage controlled oscillator		
UNIT-06	Comparators & Converters	5L	
	Basic comparator & its characteristics, zero crossing detector, voltage limiters, clippers & clampers, small signal		
	half wave & full wave rectifiers, sample and hold circuit, ADC, DAC		
UNIT-07	Voltage Regulators	3L	
	Fixed Voltage Regulator, Adjustable voltage regulators, Switching regulators, special regulators		
Course Outco	mes		
Upon successf	ul completion of this course students will be able to :		
CO2. To learn	how to detect amplify store create and manipulate signals using operational amplifiers)		
CO3: To desig	in and analyze the responses of IC based designed circuits in the area of power management, signal co	onditioning,	
analog a	nd digital communication		
CO4 : To devel	lop IC based projects in the above areas		
Books and References			
1. OP-AMP and Linear Integrated Circuits, Ramakant A. Gayakwad, PHI Publication.			
2. Design with Operation Ampliners and Analog Integrated Circuits, Serger Franco, TMH.			
 Integrated Electronics: Analog and Digital Circuits & System, Millman & Halklas, TMH. Linear Integrated Circuits, D. Cheudhari, C. Join, New Are Integrational Visited 			
4. Linear integ	4. Linear integrated Circuits, D. Choudhan, S. Jain, New Age international infilted.		

Course Name: Analog Communication Systems Course Code: EC-222 Course Type: Core Contact Hours/Week: 3L + 1T

Course Credits: 04

Course Objectives

- To introduce the concepts of analog communication systems.
- To equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.
- Differentiate between different modulation techniques and necessities of the same.

Unit Number	Course Content	Lectures
UNIT-01	Modulation Techniques	10L
	Various Frequency Bands Used for Communication, Types of Communication and Need of	
	Modulation. Introduction to AM, FM, PM, Frequency Spectrum of AM Waves, Representation of	
	AM, Power Relation in AM Waves, Need and Description of SSB, Suppression of Carrier,	
	Suppression of Unwanted Side-bands, Independent Sideband System, Vestigial Sideband System,	
	Mathematical Representation of FM, Frequency Spectrum of AM Waves, Phase Modulation,	
	Comparison Between Analog and Digital Modulation, Wideband and Narrow Band FM.	
UNIT-02	AM Transmitters and Receivers	10L
	AM Transmitters: Generation of AM, Low Level and High Level Modulation, AM Transmitter Block	
	Diagram, Collector Class C Modulator, Base Modulator, Transistor Vander Bill Modulator, DSB S/C	
	Modulator. AM Receiver: Tuned Radio Frequency (TRF) Receiver. Super Heterodyne Receiver,	
	RF Section and Unaracteristics, Mixers, Frequency Changing and Tracking, IF Rejection and IF	
	Ampliners. Detection and Automatic Gain Control (AGC), Am Receiver Characteristics.	051
01011-03	FW Transmitters: Pasia Paguiraments and Constration of EM. EM. Modulation Matheds: Direct.	UJL
	Methods Variable Canacitor Modulator Varactor Diode Modulator FET Reactance Modulator	
	Transistor Reactance Modulator, Pre-emphasis Direct FM Modulator, AFC in Reactance	
	Modulator, Disadvantages of Direct Method, Indirect Modulators, RC Phase Shift Modulators.	
	Armstrong FM Systems, FM Receivers: Limiters, Single and Double-Tuned Demodulators,	
	Balanced Slope Detector, Foster-Seeley or Phase Discriminator, De-emphasis, Ratio Detector,	
	Block Diagram of FM Receivers, RF Amplifiers, FM Receiver Characteristics.	
UNIT-04	SSB Transmitters and Receivers	05L
	Generator of SSB, Balanced Modulator Circuit, Filter Method, Phase Shift Method, Third Method,	
	Phase Cancellation Method, Demodulation of SSB, Product Demodulator, Diode Detection	
	Technique of SSB.	
UNIT-05	Pulse Modulation Techniques	06L
	Pulse Amplitude Modulation and Demodulation, Pulse Width Modulation and Demodulation, Pulse	
	Position Modulation and Demodulation, Sampling Theorem, Time Division Multiplexing, Frequency	
Course Outeer	Division Multiplexing.	
Course Outcor	nes	
Upon successfe	al completion of the course, the students will be able to	
CO1: Different	tiate AM and FM transmission.	
CO2: To analy	/ze various methods of base band /band pass analog transmission and detection.	
CO3: Gain the	knowledge of components of analog communication system	
Books and Ref	ierences	
1. Electronic c	ommunication Systems by G. Kennedy, McGraw-Hill Education Publisher.	
2. Principals of	f Communication System by Taub & Schilling, McGraw-Hill Education Publisher.	
3. Electronic c	ommunication Systems by S. Havkin. Wiley India Pyt. Limited Publisher.	

Course Name:	Electromagnetic Field Theory	
Course Code:	EC-223	
Course Type:	Core	
Contact Hours/Week: 31 + 1T		

Course Credits: 04

Course Objectives

- To understand the basic concepts of vector analysis, co-ordinate transformation and space derivative.
- To introduce the fundamental concepts relevant to electrostatic field and application of Gauss' law.
- To introduce the fundamental concepts relevant to magnetostatic field and application of Biot-Savart's law.
- To introduce the concept of Maxwell's equations and how electromagnetic wave propagates.
- To give the understating of wave propagation in guided media.

- CO2: Describe the force between charges and equipotential surfaces and electrostatic shielding/ screening.
- CO3: Describe the magnetic field due to a current element and force on a chage particle due to magnetic field.
- CO4: Describe the electriomagnetic wave phenomenon and power carried by an lectromagnetic wave.
- CO5: Identify that the KVL and KCL law (Circuit theory) are not suitable to apply at microwave frequencies and Maxwell's equations (Field theory) are too complex to apply for each problem. And, how, the transmission line theory bridges the gap between circuit theory and field theory. Also, how to design PCB.

Books and References

- 1. Elements of Engineering Electromagnetics by Matthew N.O. Sadiku, Oxford University Press.
- 2. Engineering Electromagnetics by William Hayt, TATA McGraw-Hill.
- 3. Elements of Engineering Electromagnetics by Narayana Rao, N, Pearson Education.
- 4. Electromagnetic Waves and Radiating Systems by Jordan and Balmain, PHI, Second Ed.
- 5. Electromagnetics by J.D. Kraus, McGraw-Hill.

Course Name:	VLSI Technology	
Course Code:	EC-224 Corp	
Contact Hours/	Course (Credits: 03
Course Object	ives:	
To impart	knowledge about the miniaturization of Electronic Systems.	
To introdu	uce the fundamental concepts relevant to VLSI fabrication.	
To enable	e the students to understand the various VLSI fabrication techniques.	
Unit Number	Course Content	Lectures
UNIT-01	Introduction to VLSI: Concept Miniaturization of Electronic Systems & its impact on characterization.	03L
UNIT-02	 Monolithic Fabrication Techniques: Crystal growth: Source of silicon; Single crystalline and Poly crystalline; Requirement of purity for electronics industry; Electronics grade silicon production; Crystal growth techniques: Bridgeman method, Float zone method, Czocharalski method, Modified Czocharalski method; refining; Silicon Wafer Preparation & Crystal Defects. Epitaxial Process: Need of epitaxial layer; vapors phase epitaxy -reactor design, Chemistry of epitaxial process, Transport mechanism doping & auto doping; selective epitaxy, Epitaxial process induced defects, Molecular beam epitaxy, Merits and demerits among epitaxial processes; recent trends in Epitaxy. Oxidation: Importance of oxidation; types of oxidation techniques; growth mechanism & kinetics; factors affecting the growth mechanisms; silicon oxidation model, dry & wet oxidation; oxidation induced faults; recent trends in oxidation. Lithography: Basic steps in lithography; Lithography techniques-optical lithography, Electron beam lithography, X-ray lithography, Ion beam lithography; resists and mask preparation of respective lithographies, Printing techniques-contact, Proximity printing and projection printing; merits and demerits of lithographies; recent trends in lithography at nano regime. Etching: Performance metrics of etching; types of etching- wet and dry etching; dry etching techniques-ion beam or ion-milling, Sputter ion plasma etching and reactive ion etching (RIE); merits and demerits of etching; etching induced defects; recent trends in epitaxy. Diffusion and Ion Implantation: Diffusion mechanisms; diffusion reactor; diffusion profile; diffusion kinetics; parameters affecting diffusion profile; Dopants and their behavior, choice of dopants; Ion Implantation- reactor design, impurity distribution profile, Properties of ion implantation, Low energy and high energy ion implantation. 	21L
UNIT-03	Packaging of VLSI Chip: Introduction to packaging; packaging process; package design considerations, Various packages types.	04L
UNIT-04	Isolation Techniques in Monolithic Components: Isolation techniques in Diodes, BJT and MOSFETs (Enhancement and depletion mode)	04L
UNIT-05	Monolithic Components- Prototype Fabrication: Prototype fabrication of Diodes, npn BJT, pnp BJT, MOSFETs (Enhancement and depletion mode), n-MOS, p-MOS, CMOS, Resistors and Capacitors.	04L
Course Outco	mes	
CO1: Identify	ul completion of the course, the students will be able to the material properties and ambient conditions for chips fabrication	
CO2: Describ	e the analysis of technology scaling.	
CO3: Underst	and the complexities involved in the integrated circuits.	
CO4: Apply p	rinciples toldentify and Analyze the various steps for the fabrication of various components	
CO5: Assess	the various reliability issues in VLSI technology	
	terences boology by S.M. Sze. Tata Mc Graw Hill	
2 VISITED	rication Principles by S.K. Gandhi, John Willey & Sons	
3. Integrated	d Circuits by K. R. Botkar. Khanna Publishers	
4. Micromad	chined Transducer by G.T.A. Kovacs, McGraw Hill, 1998	

5. Principles of Microelectronics Technology by D. Nagchoudhary, PHI

Course Name: Linear Integrated Circuits Lab

Course Code: EC-225

Contact Hours/Week: 2P

Course Objectives

- To learn practical applications of operational amplifier.
- To design and develop circuits using operational amplifiers.
- To learn how to detect, amplify, store, create and manipulate signals using operational amplifiers.

List of Experiments

- 1. To demonstrate the relationship between input and output in for the inverting and non-inverting configuration of the Op-Amp. 741.
- 2. To verify the function of OP-Amp's a summer and as a difference amplifier.
- 3. To perform the mathematical operation of differentiation using basic and practical circuit of Op-Amp's.
- 4. To perform the mathematical operation of integration using basic and practical circuit of Op-Amp's.
- 5. To study the half wave and full wave rectifier circuits using Op-Amp's
- 6. To design a first order butter worth low pass and high pass filter and determining its frequency response.
- 7. To plot the frequency response of the band pass filter for a specified frequency range.
- 8. To design a square, triangular and sawtooth wave generator using Op-Amp's.
- 9. To design the Wien Bridge oscillator using Op-Amp's.
- 10. To study the clipping and clamping circuits using operational amplifiers.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: To learn the basic applications of the operational amplifier

- CO2: To learn how to detect, amplify, store, create and manipulate signals using operational amplifiers
- CO3: To design and analyze the responses of IC based designed circuits in the area of power management, signal conditioning, analog and digital communication

Course Name: Analog Communication Lab

Course Code: EC-226

Contact Hours/Week: 2P

Course Objectives

- To understand practical implementation of various analog modulation schemes.
- To analyze and measure the performance of various analog modulation schemes.
- To understand practical implementation of pulse modulation, TDM and FDM.

List of Experiments

- 1. Amplitude Modulation and Demodulation
- 2. DSB SC Modulation and Demodulation
- 3. SSB SC Modulation and Demodulation
- 4. Frequency Modulation and Demodulation
- 5. To Observe and Measure Frequency Deviation and Modulation Index.
- 6. Pre Emphasis De Emphasis.
- 7. PAM Generation and Reconstruction
- 8. PWM Generation and Reconstruction
- 9. PPM Generation and Reconstruction
- 10. Verification of Sampling Theorem
- 11. Time Division and Frequency Division Multiplexing
- 12. Phase Locked Loop

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Design and implement AM and FM based analog communication systems.
- CO2: Design and implement Pulse modulation systems.
- CO3: Design and implement FDM and TDM systems.
- CO4: Analyze the performance measure of Analog Communication Systems.

Course Name: Circuit Design and Simulation Lab

Course Code: EC-227

Contact Hours/Week: 2P

Course Objectives

- To provide skills for designing Electronics circuits in circuit simulator
- To provide skills for analyzing the electronics circuits
- To enable the students to be able to design a new electronic circuit.

List of Experiments

- 1. Introduction to Tanner and Cadence EDA simulation tool.
- 2. To study the time and frequency response of series RLC circuit.
- 3. To study the frequency response of common emitter configuration of BJT.
- 4. To simulate N-MOS transistor and obtain its transfer and output characteristics.
- 5. To simulate-MOS transistor and obtain its transfer and output characteristics.
- 6. To simulate MOS inverter using resistive load, CMOS inverter, pseudo NMOS inverter and enhancement mode CMOS inverter and obtain their VTC.
- 7. To simulate NAND and NOR logic gate using CMOS and study its performance.
- 8. To simulate EX-OR and EX-NOR logic gate using CMOS and study its performance.
- 9. To simulate half adder and Full adder using CMOS and study its performance.
- 10. Introduction to Physical simulation and TCAD.
- 11. Build a simulation mesh for diode and study its characteristics.
- 12. Build a simulation mesh for BJT and study its characteristics.
- 13. Build a simulation mesh for MOSFET and study its characteristics.
- 14. To study the CMOS inverter characterization using proto-type fabricated NMOS and PMOS.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Identify and introduce simulate the electronic circuits

- CO2: Design electronic circuit for a concerned application.
- CO3: Write a TCAD program for the performance analysis of electronic device

Course Name:	Microprocessor Architecture and Applications	
Course Code:	EC-311	
Course Type:	Core	
Contact Hours/	Week: 3L + 1T	Course Credits: 04
Course Object	tives	
To impart k	nowledge about the architecture and instruction set of typical 8-bit microprocessor.	
To introduce	e the fundamental concepts relevant to, Assembly Language, Timers, Interrupts.	
 Input-output 	it techniques and important programmable support chips used in microprocessor-based system	ns are discussed in
detail.		
Unit Number	Course Content	Lectures
UNIT-01	Introduction to Microprocessors: History and Evolution, types of microprocessors,	06L
	Microcomputer Programming Languages, Microcomputer Architecture, Pipelining, Clocking, Intel	
	8085 Microprocessor, Register Architecture, Bus Organization, ALU, Control section, ISA of	
	8085, Instruction format, Addressing modes, Types of Instructions.	
UNIT-02	Assembly Language Programming and Timing Diagram: Assembly language programming	08L
	in 8085, Macros, Labels and Directives, Microprocessor timings, Micro instructions, Instruction	
	cycle, Machine cycles, T-states, State transition diagrams, Timing diagram for different machine	
	cycles, Memory and I/O interface.	
UNIT-03	Serial I/O, Interrupts: Serial I/O using SID, SOD, Interrupts in 8085, RST instructions, Issues in	09L
	implementing interrupts, Multiple interrupts and priorities, Daisy chaining, Interrupt handling in	
	8085, Enabling, Disabling & masking of interrupts.	
UNIT-04	Data Transfer techniques: Data transfer techniques, Parallel & Programmed data transfer	06L
	using 8155, Programmable parallel ports & handshake input/output, Asynchronous and	
	Synchronous data transfer using 8251, PIC (8259), PPI (8255), DMA controller (8257).	
	Interfacing Traffic Light Interface, Stepper Motor, 4 Digit 7 Segment LED, stepper motor and	
	LCD.	
UNIT-05	16-Bit Microprocessors (Intel 8086): Introduction to a 16 bit microprocessor, Memory address	07L
	space and data organization, Segment registers and Memory segmentation, Generating a	
	memory address, I/O address space, Addressing modes, Comparison of 8086 & 8088, Basic	

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Understand the architecture of 8085 and 8086

Set of 8086.

CO2: Impart the knowledge about the instruction set

CO3: Understand the basic idea about the data transfer schemes and its applications

Books and References

1. Microprocessor Architecture, Programming & Applications with the 8085/8080A by R.S. Gaonkar, Wiley Eastern Ltd.

configurations of 8086/8088, Min. Mode, Max. Mode & System timing, Introduction to Instruction

2. Microprocessors & Interfacing by D.V. Hall, McGraw Hill.

3. Microprocessors: Theory & Applications (Intel & Motorola) by M. Rafiquzzman, PHI.

4. INTEL 8086/88, 80186, 286, 386, 486, Pentium Pro & Pentium IV by Berry B. Bray.

Course Name:	Digital Communication and Systems	
Course Code:	EC-312	
Course Type:	Core	
Contact Hours/	Week: 3L + 1T	Course Credits: 04
Course Object	tives	
• To impart k	nowledge about the key modules of digital communication systems with emphasis on digital modula	tion techniques.
To introduc	e the fundamental concepts relevant to reception of digital signals	
To enable t	he students to understand the concept and basics of information theory and the basics of channel c	oding/decoding.
Unit Number	Course Content	Lectures
UNIT-01	Introduction: Concepts of Digital Communication, Advantages/Disadvantages of Digital Communication Systems over Analog Communication Systems. Block Diagram of Basic Digital Communication Transmitter/Receiver.	02L
UNIT-02	Analog to Digital Conversion: Noisy Communications Channels, Sampling Theorem: Low Pass Signals And Band Pass Signals, Pulse Amplitude Modulation, Channel Bandwidth For PAM Signal, Natural Sampling, Flat Top Sampling, Signal Recovery & Holding, Quantization of Signal, Quantization Error, Pulse Code Modulation (PCM), Delta Modulation, Adaptive Delta Modulation.	08L
UNIT-03	Digital Modulation Techniques: Binary Phase Shift Keying, Differential Phase Shift Keying, Differential Encoded PSK, QPSK, Quadrature Amplitude Shift Keying (QASK), Binary Frequency Shift Keying.	8L
UNIT-04	Data Transmission: Base Band Signal Receiver, Probability of Error, Optimum Filter, White Noise- Matched Filter, Probability of Error of The Matched Filter, Coherent Reception: Correlation, Application of Coherent Reception In PSK And FSK. Correlation Receiver for QPSK.	7L
UNIT-05	Noise in Pulse Code & Delta Modulation Systems: PCM Transmission, Calculation of Quantization Noise, O/P Signal Power, The Effect of Thermal Noise, O/P Signal to Noise Ratio in PCM, Delta Modulation, Quantization Noise in Delta Modulation, The O/P Signal to Quantization Noise Ratio in Delta Modulation, O/P Signal to Noise Ratio in Delta Modulation.	6L
UNIT-06	Information Coding and Decoding: Coding for Error Detection and Correction, Basics of Block Coding and Decoding, Introduction to Cyclic Codes, Basic Convolution Coding /Decoding and Viterbi Algorithm.	05L
Course Outco	mes	
Upon successf	ful completion of the course, the students will be able to	
 CO1: Apply the knowledge of statistical theory of communication and explain the conventional digital communication system. CO2: Apply the knowledge of signals and system and evaluate the performance of digital communication system in the presence of noise. 		
CO3: Apply th	he knowledge of digital electronics and describe the error control codes like block code, cyclic code.	
CO4: Design as well as conduct experiments, analyze and interpret the results to provide valid conclusions for digital modulators and		
demodulator using hardware components and communication systems using CAD tool.		
Books and Re	ferences	
1. Principles	of communication systems by Taub & Schilling, McGraw-Hill Education (India).	
2. Communication Systems by Simon Haykin, John-Wiley & Sons, Inc.		
3. Digital Communication by J.G. Proakis, McGraw – Hill.		
4. Digital Coi 5. Introductio	mmunications: Fundamentals & Applications by B. Sklar, Pearson Education. on to Digital Communication by R.E. Zimer & R.L. Peterson, PHI.	

Course Name:	Digital Signal Processing	
Course Code:	EC-313	
Course Type:	Core	
Contact Hours/	Week: 3L+1T	Course Credits: 04
Course Object	ives	
 Digita 	I Signal processing explains the basics of discrete time signals and systems. It focuses on the oper	ation on the signals
in tim	ne and frequency domain. It covers the different design techniques for FIR and IIR filters and a	lso their realization
struct	tures.	
Unit Number	Course Content	Lectures
UNIT-01	DISCRETE-TIME SIGNALS AND SYSTEMS	07L
	Basic Elements of a Digital Signal Processing System, Advantages of Digital Signal Processing,	
	Classification of Signals, The Concept of Frequency In Continuous-Time and Discrete-Time Domain,	
	Discrete-Time Signals and Systems, Analysis Of Discrete-Time Linear Shift-Invariant Systems,	
	Linearity, Causality And Stability Criterion, Discrete-Time Systems Described By Difference	
		051
0111-02	The Fourier Transform Of Discrete-Time Signals (DTET) Properties Of The DTET. The Frequency	UJL
	Response Of An LTI Discrete-Time System, The Fourier Series Of Discrete-Time Signals (DTFS).	
UNIT-03	DISCRETE FOURIER TRANSFORM:	07L
	Frequency Domain Sampling And The DFT, Properties Of The DFT, Linear Filtering Methods Based	
	On The DFT, Efficient Computation Of The DFT: Decimation-In-Time And Decimation-In Frequency	
	Fast Fourier Transform Algorithms.	
UNIT-04	Z-TRANSFORM	05L
	Introduction To The Z-Transform & The Inverse Z-Transform, Properties Of The Z-Transform,	
	Relationship Between The Fourier Transform And The Z-Transform, Rational Z-Transforms &	
	The System Function, Analysis Of Linear Time-Invariant Systems In The Z-Domain.	
UNIT-05	DIGITAL FILTER STRUCTURES	04L
	Digital Filter Categories, Realization Structures For FIR & IIR Digital Filters, Representation Of	
	Numbers: Fixed-Point, Floating Point, Error Resulting From Rounding And Truncation.	
UNIT-06	DIGITAL FILTER DESIGN	08L
	General considerations; design of IIR filter from Analog filters: IIR filter design using	
	Approximation of derivative, impulse invariant method, Bilinear transformation; Design of	
	using the windowing method and the frequency sampling method	
Course Outcor	nes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Understa	nd the discrete time signals and systems.	
CO2: Understa	nd the Fourier transform and Fourier series of discrete time signals.	
CO3: Analysis	the discrete time signals in frequency domain using DFT and FFT.	
CO4: Understa	nd the Z-Transform and its properties.	
CO5: Understa	nd the realization structures for FIR and IIR digital filters.	
CO6: Analysis	the design characteristic of FIR and IIR filters.	
Books and References		
1. Digital Signal Processing: Principles, Algorithms and Applications by John G. Proakis & Dimitris G. Manolakis, Pearson Education.		
2. Digital Signal Processing by Sanjit K. Mitra, Tata McGraw Hill Publication.		
3. Digital Signa	al Processing by P Ramesh Babu, SCITECH Publication (India) Pvt Lmt.	

Course Name:	Microwave Devices and Systems			
Course Code:	EC-314			
Course Type:	Core			
Contact Hours/	Contact Hours/Week: 3L Course Credits: 03			
Course Object	ives			
To impart k	nowledge about the usage of microwave communication.			
To introduc	e the fundamental concepts relevant to waveguide problems, microwave devices and components.			
To enable t	he students to understand the factors that cause the power, frequency, operating limitations of the d	levices.		
Unit Number	Course Content	Lectures		
UNIT-01	Introduction on Microwaves: Frequency Allocations and Frequency Plans, Microwave	06L		
	Waveguide, Rectangular Waveguide and its Analysis, Circular Waveguide, Modes of			
	Propagation, Dominant Modes, Cut-off wavelength, Mode Excitation.			
UNIT-02	Microwave Generators and Amplifiers: Limitations of Conventional Tubes at Microwave	06L		
	Frequency, Reflex Klystron, Two and Multicavity Klystron Amplifiers and Oscillators and their			
	Analysis, Basics on Magnetrons and Traveling Wave Tube and their Applications.			
UNIT-03	Microwave Devices: Scattering Matrix of Microwave Waveguide Junction, Properties of S-	06L		
	Matrix, E-Plane Tee, H-plane Tee, Magic Tee, Attenuators, Directional Couplers, Ferrite Devices,			
	Faraday Rotation, Gyrator, Isolator, Circulators and Cavity Resonators			
UNIT-04	Microwave Solid-State Devices: Gunn Diode and its Modes of Operation, Avalanche IMPATT	06L		
	Diode, TRAPATT Diode, Operations and V-I Characteristics of Tunnel Diode, Schottky Diode,			
	Backward Diode and Varactor Diodes, PIN Diode and its Applications.			
UNIT-05	Micro-Strip Lines: Introduction on Micro Strip Lines, Characteristic Impedance of Micro Strip	06L		
	Lines, Losses in Micro Strip Lines, Quality Factor of Micro Strip, Parallel Strip Lines, Coplanar			
	Strip Lines and Shielded Strip Lines.			
UNIT-06	Microwave Measurements: Measurement of Standing Wave Ratio, Measurement of	06L		
	Wavelength and Frequency, Measurement of Power, Radiation Pattern Measurement of			
	Antenna, Microwave Link.			
Course Outco	mes			
Upon successf	ul completion of the course, the students will be able to			
CO1: Identify	the knowledge of generations and amplifications of the signals at high frequencies			
CO2: Describe the microwave components, devices and system.				
CO3: Apply principles of transmission lines at microwave frequencies, reflection and transmission of the wave.				
CO4: Assess the usage of microwave spectrum, microwave measurement techniques.				
Books and References				
1. Microwave Engineering by David M. Pozar, Wiley Publication, New Delhi				
 Microwave Devices and Circuits by Samuel Y. Liao, Prentice-Hall, U.S.A Microwave and Dadas Fasin assists by M. Kullassis Hussels Dati in the set of th				
J. Wildowave and Radal Engineering by W. Ruikanii, Onesh Fublications, India.				
5. Microwave Engineering by Das and S. K. Das. McGraw-Hill New Dolbi				
5. WICrowave	Microwave Engineering by Das and O. N. Das, Micoraw-Lini, New Dellin. Elements of Microwave Engineering by Deleving Chattering, Ellis Herwood Ltd			
o. Elements of Microwave Engineering by Rajeswari Chatterjee, Ellis Horwood Ltd.				

Course Name: Digital Communication Lab

Course Code: EC-315

Contact Hours/Week: 2P

Course Objectives

- To understand practical implementation of various digital modulation schemes.
- To analyze and measure the performance of various digital modulation schemes.
- To understand practical implementation of line coding formats.

List of Experiments

- 1. Time Division Multiplexing & Demultiplexing.
- 2. Pulse Code Modulation & Demodulation.
- 3. Delta Modulation and Demodulation.
- 4. Adaptive Delta Modulation and Demodulation.
- 5. Binary Phase Shift Keying (BPSK) Modulation and Demodulation.
- 6. Frequency Shift Keying (FSK) Modulation and Demodulation.
- 7. Amplitude Shift Keying (ASK) Modulation and Demodulation.
- 8. Quadrature Phase Shift Keying (QPSK) Modulation and Demodulation
- 9. To Study Characteristics of Gaussian Noise and to Measure its Spectral Height in Frequency Band over Which Its Spectral Density is flat.
- 10. To Study Line Coding Techniques.
- 11. To Study The Characteristics of The Phase Shifter, Multiplier and The Integrate-And-Dump Filter.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Design and implement BPSK, QPSK, ASK and BFSK based digital communication systems.

CO2: Design and implement PCM, DM and ADM based digital communication systems.

CO3: Analyze the performance measure of Digital Communication Systems.

Course Name: Microwave Devices and Systems Lab

Course Code: EC-316

Contact Hours/Week: 2P

Course Objectives

- To provide skills for operating microwave benches at designed X band setup
- To provide skills for usage of microwave sources
- To enable the students to practical know how the microwave measurements.

List of Experiments

- 1. To Study the Microwave Components, Sources and Different Types of Loads at X Band Setup.
- 2. To Study the Characteristics of Reflex Klystron Oscillator and Determine its Mechanical and Electronics Tuning Range.
- 3. To Study the V-I Characteristics of Gunn Diode and Determine its Negative Resistance.
- 4. To Determine the Insertion Loss Parameter and Isolation Parameter of a Ferrite Based Isolator and Circulators.
- 5. To Measure the Frequency in a Rectangular Waveguide and Demonstrate the Relationship among the Frequency, Free Space Wavelength and Guide Wavelength.
- 6. To Plot the Radiation Pattern of a Pyramidal Horn Antenna and determine its Gain and Beam width.
- 7. To Study the Characteristics of Various Tees, i.e. E-Plane Tee, H-Plane Tee and Magic Tees.
- 8. To Measure the Coupling and Directivity of a 3 dB, 10 dB and 20 dB Directional Couplers.
- 9. To Measure the Low, Medium, and High VSWR of DUT Using Slotted Lines Section.
- 10. To Measure the Unknown Impedances using Smith Chart.
- 11. To Measure of VSWR, Insertion Loss, Attenuation of Fixed and Variable Attenuators.
- 12. To Measure of Phase Shift of a Phase Shifter.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Identify a practical approach for testing and measurement of these devices in real environment.
- CO2: Design any microwave device and components at.
- CO3: Understanding of basic requirements of microwave components and sources in real time applications

Course Name: Digital Signal Processing Lab Course Code: EC-317

Contact Hours/Week: 2P

Course Objectives

- To perform the time domain and frequency operations on discrete signals in MATLAB software
- To impart the knowledge of TMS320C6713 Processor and various operation using it.

List of Experiments

- 1. Generation of Basic continuous and discrete signals.
- 2. Write a MATLAB program to find the linear convolution of two discrete signals.
- 3. Write a MATLAB program to find the correlation of two signals.
- 4. Write a MATLAB program to find the circular convolution of two discrete signals.
- 5. Write a MATLAB program to find the DFT and IDFT of a discrete signal using FFT algorithm.
- 6. Write a MATLAB program to find the Z-transform of a discrete signal.
- 7. Design a FIR filters (LPF, HPF, BPF and BSF) using windowing technique and plot their magnitude and phase spectrum.
- 8. Design a FIR filters (LPF, HPF, BPF and BSF) using frequency sampling technique and plot their magnitude and phase spectrum.
- 9. Design a Butterworth IIR filters (LPF, HPF, BPF and BSF) and plots their magnitude and phase spectrum.
- 10. Design a Cheby-I and Cheby-II IIR filters (LPF, HPF, BPF and BSF) and plot their magnitude and phase spectrum.
- 11. Design a filter to remove noise from a signal.
- 12. Introduction to TMS320C6713 Processor.
- 13. Addition, Subtraction and multiplication in fixed point representation.
- 14. Addition, Subtraction and multiplication in floating point representation.
- 15. Linear Convolution using DSP kit.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Understand various signal operations in time and frequency domain.

CO2: Design the FIR and IIR filters and will be able to remove noises from signal using filters.

CO3: Understand the TMS320C6713 Processor and various operations using it.

Course Name:	Microcontroller And Embedded Systems
Course Code:	EC-321
Course Type:	Core

Contact Hours/Week: 3L + 1T

Course Credits: 04

Course Objectives

• To impart knowledge about the microcontrollers, its programming, interrupts timers and assembly language.

- The concepts of ARM architecture and real-time operating system.
- To provide experience to integrate hardware and software for microcontroller application system.
- To impart ability to put together processor, peripherals and memory and build a real time system.

Unit Number	Course Content	Lectures
UNIT-01	Microcontroller: Introduction to Microcontrollers, Evolution, Architectures, Implementations,	05L
	Background and History of Embedded Systems, Characteristics of ES, Hardware/Software Co-	
	Design, RISC vs CISC, MCS-51 Family Overview, Important Features, Architecture, 8051 Pin	
	Functions, Architecture, Addressing Modes, Instruction Set, Instruction Types, Applications of	
	ASIC and FPGA in ES.	
UNIT-02	Programming: Assembly Programming, Timer Registers, Timer Modes, Overflow Flags,	10L
	Clocking Sources, Timer Counter Interrupts, Baud Rate Generation, Serial Port Register, Modes	
	of Operation, Processing Interrupts, Interrupt Service Routines, Look-up Tables.	
UNIT-03	Embedded Software Development: Software development flow, Polling, Interrupt driven, Multi-	08L
	tasking systems, Architecture of an RTOS, Important features of RTOS, Embedded Systems	
	Programming, Locks and Semaphores, Operating System Timers and Interrupts, Exceptions,	
	Tasks, Task states and scheduling, Task structures, Synchronization, Communication and	
	concurrency, Semaphores, Real-time clock.	
UNIT-04	32-Bit Cortex-M Architecture: CPU architecture, Memory model, Registers, Modes,	07L
	Exceptions, Interrupts, Exception handlers, interrupt controllers, Power modes, Hardware	
	features and optimizations, Advanced bus standards like AMBA, The NVIC on ARM Cortex-M.	
UNIT-05	Instruction Set of ARM: Syntax, Addressing modes and operands, Memory access	06L
	instructions, Logical operations, Shift operations, Arithmetic operations, Stack, Functions and	
	control flow, Assembler directives, Thumb and arm instruction differences, Development with	
	Keil and Mbed, Applications like IoT and machine learning with cortex-M.	
Course Outco	nes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Write th	e programs for microcontrollers	
CO2: Underst	and the role of embedded systems in industry.	
CO3: Unders	tand the design concept of embedded systems.	
Books and Re	ferences	
1. The 8051 M	licrocontroller and Embedded Systems (2 nd Ed.) by Mazidi Muhammad Ali, Pearson publications.	
2. The Definiti	ve Guide to ARM Cortex-M3 processors (3 rd Ed.) by Joseph Yiu, Newnes publication.	

3. Introduction to ARM Cortex-M Microcontrollers, Vol. 1 (5th Ed.) by Jonathan W. Valvano, Create Space.

- 4. Real-Time Interfacing to ARM Cortex-M Microcontrollers, Vol. 2 (4th Ed.) by Jonathan W. Valvano, Create Space.
- 5. Real-Time Operating Systems for ARM Cortex-M Microcontrollers, Vol. 3 (2nd Ed.) by Jonathan W. Valvano, Create Space.

Course Name:	Wireless Communication		
Course Code:	EC-322		
Course Type:	Core		
Contact Hours/	Neek: 3L + 1T	Course Credits: 04	
Course Object	ives		
 To un 	derstand the cellular concept of wireless communications		
 To stu 	udy large-scale and small-scale propagation effects in wireless channels		
 To stu 	udy different techniques that improve radio link performance in wireless communications		
 To un 	derstand general concepts of various multiple access techniques used in wireless communication		
Unit Number	Course Content	Lectures	
UNIT-01	Introduction: Evolution of wireless communication systems, Examples of wireless communication systems.	2L	
UNIT-02	The Cellular Concept – System Design Fundamentals: Concept of frequency reuse, Channel assignment strategies, Handoff strategies, Interference and system capacity, Trunking and grade of service, Improving coverage and capacity in cellular systems.	9L	
UNIT-03	Propagation Models: Free space propagation model, Two-ray ground reflection model, Distance power loss, Macrocell propagation model, Micro-cell propagation model, Shadowing model, Multipath effects in mobile communication, Models for multipath reception.	8L	
UNIT-04	Equalization, Diversity and Channel Coding: Fundamentals of equalization, Adaptive equalizers, Linear and nonlinear equalization, Algorithms for adaptive equalization, Diversity techniques, Fundamentals of channel coding, Overview of error detection and correction codes.	9L	
UNIT-05	Multiple Access Techniques: Introduction to multiple access, Frequency division multiple access, Time division multiple access, Spread spectrum multiple access, Space division multiple access, Packet radio, Orthogonal frequency division multiple access; Introduction to wireless systems and standards.	8L	
Course Outcor	nes		
Upon successf	ul completion of the course, the students will be able to		
CO1: Underst	and the operation of wireless and cellular communication systems		
CO2: Analyze various design related issues associated with improving coverage and capacity of cellular systems			
CO3: Analyze large-scale and small-scale radio propagation effects in mobile cellular systems			
CO4: Understand the concepts of equalization, diversity and channel coding in wireless communications			
CO5: Understand general concepts of various multiple access techniques for wireless communication			
Books and References			
1. Wireless Communications: Principles and Practice by Theodore S. Rappaport, Pearson / PHI Publication			
2. Wireless Co	mmunications and Networks: 3G and Beyond by Iti Saha Misra, Tata McGraw Hill Publication		
3. Mobile Cellu	ular Telecommunications: Analog and Digital Systems by William C. Y. Lee, Tata McGraw Hill Publi	cation	
4. Wireless Digital Communications by Kamilo Feher, PHI Publication			

Course Credits: 04

Course Objectives

- To introduce the fundamental concepts relevant to MOSFETs and physical design of VLSI circuits.
- To impart knowledge about various CMOS VLSI Design styles.
- To design MOS memories and learn high performance design techniques.
- To enable the students understand the parameters on which the circuit performance depends and their control strategies.

Unit Number	Course Content	Lectures
UNIT-01	MOSFETS : Fundamentals of Enhancement Mode MOSFETs, Depletion Mode MOSFETs, Weak & strong Inversion Conditions, Threshold Voltage Concept in MOSFETs, Current-Voltage (IV), Characteristics of a MOSFET, Limitations in IV Model and MOSFET parasitics, Trends & Projections in VLSI Design & Technology, Flow of VLSI Circuit Design, Scaling in MOS devices.	05L
UNIT-02	VLSI Design Styles : NMOS, CMOS Process flow, Noise Margin, Inverter Threshold Voltage, NMOS Inverter design and characteristics, CMOS Inverter Design and Properties, Delay and Power Dissipation, Parallel & Series Equivalent circuits, Static CMOS Circuit Design.	09L
UNIT-03	VLSI Physical Design : Stick Diagrams, Physical Design Rules, Layout Designing, Euler's Rule for Physical Design, Reliability issues in CMOS VLSI, Latching.	05L
UNIT-04	High Performance Logics: Precharge-Evaluate logic, Dynamic CMOS logic, NORA logic, Complementary Pass Logic (CPL), Transmission gate logic.	07L
UNIT-05	MOS Memory Design: MOS memories: ROM design, SRAM Cell design and DRAMs.	06L
UNIT-06	CMOS Amplifiers : Single stage MOS Amplifiers: Common Source amplifier, Common Gate amplifier, Common Drain amplifier	04L

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Comprehend and utilize digital and analog VLSI circuit design techniques and their advancements.

CO2: Identify, select and design any static and dynamic CMOS VLSI logic circuits for practical applications and memory design.

CO3: Analyse CMOS circuits with equivalent parameters and build upon the theoretical, mathematical and experimental models.

CO4: Use EDA tools and SPICE for analysis, verification and physical design simultaneously for efficient and optimal design of VLSI Circuits.

CO5: Generate interest and competence in self-directed continuing professional development and for sustainable research and Development in VLSI design for societal and global interest.

Books and References

1. CMOS Digital Integrated Circuits-Analysis & Design by S.M. Kang and Y. Leblebici, TMH.

2. Design of Analog CMOS Integrated Circuits by B. Razavi, TMH.

- 3. Solid State Electronic Devices by B.G. Streetman and S. Banerjee, PHI.
- 4. Principles of CMOS VLSI Design- A Systems Perspective by Neil H E Weste and K. Eshraghian.
- 5. Introduction to VLSI by K. Eshraghian and Pucknell, PHI.

Course Name:	Antenna and Wave Propagation	
Course Code:	EC-324	
Course Type:	Core	
Contact Hours/	Week: 3L	Course Credits: 03
Course Object	ives	
 To impart k 	mowledge about the Electromagnetic radiation, antenna basic parameters, antenna arrays and the	eir patterns, special
antennas, v	vave propagation over ground, through troposphere and ionosphere.	
 To introduc 	e the fundamental concepts relevant to electromagnetic theory and its application to antennas and v	vave propagation.
Unit Number	Course Content	Lectures
UNIT-01	Electromagnetic radiation: Radiation phenomenon from an oscillation dipole in free space, Induction	06L
	and radiation fields, Retarded potentials, Radiated power and radiation resistance from a short dipole,	
	Half wave dipole and quarter wave monopole.	
UNIT-02	Antenna Fundamentals: Directional properties of antennas, Radiation patterns, Antenna gain	06L
	and aperture, Antenna terminal impedance, Self and mutual impedance, Front to back ratio,	
	Antenna beam width and bandwidth, Antenna efficiency, Antenna beam area, Polarization,	
	Antenna temperature and Reciprocity properties of antennas.	001
UNIT-03	Antenna Arrays: Classification of arrays, Linear arrays of two point sources, Linear arrays of n-	08L
	point sources, Pattern multiplication, Array factor, Linear arrays of equal amplitude and spacing	
	(Broad side and end fire arrays) of n-point sources, Directivity and beam width, Non-uniform	
	arrays excitation using Binomial series.	001
UNIT-04	Special Antennas: VLF and LF antennas(Hertz and Marconi antennas), Rhombic antennas,	08L
	Loop antennas, Folded dipole antennas, Yagi-Oda antenna, Horn antennas, Microwave dish	
	Cround Wave Prenegation. Characteristics for ground wave propagation. Befloation at the	021
0111-05	Surface of a finitely conducting plane and on earth. Attenuation Calculation of field strength at a	UJL
LINIT-06	Innosphere Pronagation: The ionosphere structure Effective characteristics of the various	051
	lavers of ionosphere Reflection and Refraction of waves by ionosphere Virtual height	UJL
	Maximum usable frequency. Skin distance Regular and irregular variation of ionosphere. Fading	
	and Diversity recention	
	Space Wave Propagation: Space wave range. Troposphere waves-reflection. Refraction. Duct	
	propagation, Troposphere propagation link.	
Course Outco	mes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Identify	basic antenna parameters	
CO2: Design	and analyze wire antennas	
CO3: Design	and analyze antenna arrays	
CO4: Analyze	different antennas	
CO5: To ident	tify characteristics of radio wave propagation	
Books and Re	ferences	
1. Antennas T	heory by C.A. Balanis, Willey Publication.	
2. Antennas by J. D. Kraus, McGraw Hill.		
3. Antennas and Radio Propagation by R. E. Collins, McGraw-Hill.		
4. Electromagnetic waves & radiating System, E. C. Jorden and B. C. Balmann, P.H.I.		
5. Antenna &	Wave Propagation, K. D. Prasad, Satya Prakashan New Delhi.	

Course Name: Microprocessor and Microcontroller Lab

Course Code: EC-325

Contact Hours/Week: 2P

Course Objectives

- To provide skills for designing flowcharts and writing algorithms
- To provide skills for writing Embedded programs
- To enable the students to debug programs

List of Experiments

- 1. On 8085 kit, find the Factorial of a number
- 2. On 8085 kit, find if a number is prime or a perfect square
- 3. On 8051 kit, write a program to perform serial data transfer
- 4. On 8051 kit, generate square wave for a given frequency and duty cycle
- 5. On cortex M3, write a program to perform LED binking
- 6. On cortex M3, write a program to verify Digital out
- 7. On cortex M3, write a program to display clock on 7-segment display
- 8. On cortex M3, write a program to generate Analog output
- 9. On cortex M3, write a program to read in Analog input
- 10. On cortex M3, write a program to debug using serial pc
- 11. On cortex M3, write a program to generate PWM output
- 12. On cortex M3, write a program to perform counting on LCD counter
- 13. On cortex M3, write a program to learn Interrupt function
- 14. On cortex M3, write a program to understand 12c master and slave communication
- 15. On Intel Galileo Gen 2, plot a graph for analog input
- 16. On Intel Galileo Gen 2 write an Array in Arduino

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

- Upon successful completion of the course, the students will be able to
- CO1: Write algorithms and programming task involved for a given problem
- CO2: Design and develop modular programming skills
- CO3: Trace and debug a program

Course Name: VLSI Design Lab Course Code: EC-326

Contact Hours/Week: 2P

Course Objectives

- To learn Physical Design i.e. Layout making of VLSI circuits.
- Programming in SPICE and its use for design and analysis.
- To extract various design parameters from simulation results.
- Provide students with an opportunity to practice on EDA software & tools for VLSI Design.

List of Experiments

- 1. Familiarity with Tanner L-EDIT EDA Tools: To study the main features and utilities of the tools for design and physical design of circuits. Report the pros and cons of the tool.
- 2. To find dc and transient response of a CMOS Inverter Circuit and its Physical Design using minimum dimension criteria. Hence extract various design parameters from simulation results.
- 3. To simulate transient response of CMOS NAND Gate (Fig.1). Physical Design the logic gate or design the layout, using minimum dimension criteria.

Fig.1. CMOS NAND Gate.

- 4. Simulate firstly minimum dimension CMOS inverter circuit using SPICE. Hence analyze and plot power and delay variations i) with voltage scaling, ii) For dimension, load and frequency variations.
- 5. Simulate CMOS NAND, NOR and XOR circuits using SPICE. Hence analyze and plot their power and delay variations i)with voltage scaling, ii)For dimension, load and frequency variations.
- 6. Design a differential amplifier circuit for a voltage gain of 10. Design its layout.
- 7. Physical Design of a complex circuit AOI/ OAI, making layout using Euler's method, for delay, power and area centric designs.
- 8. Design a four input CMOS NAND and NOR gates with the constraint propagation delay not exceeding 10ns. Compare LVS.
- 9. Familiarity with Cadence Familiarization with Cadence EDA Tools. To study the main features and utilities of the tools for design and physical layout design. Report the same in practical file.
- 10. Design NAND NOR, XOR circuits using Cadence EDA Tools, for delay and power centric design criteria.
- 11. Physical design a full adder circuit using minimum number of CMOS NAND gates.
- 12. Design triangular wave generator using OP-Amps in SPICE.
- 13. Familiarization with COMSOL Multiphysics Tool and its applications for Design and study of 1D Heat Transfer with Radiation model.

Note: The concerned Course Coordinator will prepare the actual list of experiments/problems at the start of semester based on above generic list.

Course Outcomes

Upon successful completion of the course, the students will be able to

- CO1: Identify and abstract the programming task involved for a given VLSI problem.
- CO2: Design and develop programming skills for VLSI circuit design.
- CO3: Trace and debug any VLSI related program.

Course Name:	Control System	
Course Code:	EC-411	
Course Type:	Core	
Contact Hours/	Neek: 3L	Course Credits: 03
Course Object	ives	
• To dis	scuss basic concepts of linear systems.	
To pre	ovide a basic understanding of mathematical model of linear systems.	
• Ioint	roduce the fundamental concept of different control components.	
• loen	able the students to understand the concepts of time and frequency domain analysis.	
• The s	tudents can be able to learn stability analysis.	
• 10 dis	scuss the concept of state variable.	
	Course Content	Lectures
UNII-01	Basic Concepts: Historical Review, Definitions, Classification, Relative Merits and Demerits of Open and Closed Loop Systems.	03L
UNIT-02	Mathematical Models of Control System: Linear and Non-Linear Systems, Transfer Function, Mathematical Modeling of Electrical, Mechanical and Thermal Systems, Analogies, Block Diagrams and Signal Flow Graphs.	07L
UNIT-03	Control Components: DC Servomotor, AC Servomotor, Potentiometers, Synchronous, Stepper- Motor.	05L
UNIT-04	Time and Frequency Domain Analysis: Transient and Frequency Response of First and Second Order Systems, Correlationship Between Time and Frequency Domain Specifications, Steady-State Errors and Error Constants, Concepts and Applications of P, PD, PI and PID Types of Control.	07L
UNIT-05	Stability Analysis: Definition, Routh-Hurwitz Criterion, Root Locus Techniques, Nyquist Criterion, Bode Plots, Relative Stability, Gain Margin and Phase Margins.	07L
UNIT-06	State Variable Analysis: Introduction, Concept of State, State Variables & State Models, State Space Representation of Linear Continuous Time Systems, State Models for Linear Continuous Time Systems, State Variables and Linear Discrete Time Systems, Solution of State Equations, Concept of Controllability & Observability.	07L
Course Outcor	nes	
 Upon successful completion of the course, the students will be able to CO1: Demonstrate fundamentals of (feedback) control systems. CO2: Explain mathematical model for different systems. CO3: Explain different control components. CO4: Explain the relation between time and frequency domain specification and employ controllers such as P, PD, PI and PID 		
CO5: The us Evans CO6: Demor	design. le and significance of the different tools for control system design and analysis such as Nyquist plo plots (root locus). Istrate concept of state variable and state model.	ots, Bode plots, and
Books and Ref 1. Discrete-Tin 2. An Introduc 3. Control Sys 4. Modern Con	ferences ne Control Systems by K. Ogata, Prentice Hall India Learning Pvt. Ltd. tion to Control Systems by K. Warwick, World Scientific Publishing Co. Pvt. Ltd. tem Fundamentals by W. S. Levine, CRC Press. ntrol Systems by R. C. Dorf and R. H. Bishop, Prentice Hall.	

Course Name:	Optical Communication Systems & Networks	
Course Code:	EC-412	
Course Type:	Core	
Contact Hours/	Week: 3L Course	e Credits: 03
Course Object	ives	
To introdu	ce the students to various optical fibre modes, configurations and various signal degradation factors as	sociated with
I o study a	bout various optical sources and optical detectors and their use in the optical communication system.	
Unit Number	Course Content	Lectures
UNIT-01	OVERVIEW : The Electromagnetic Spectrum, Properties of Light, Dual Nature of Light Concept of A Photon, Wave Model, Characteristics of Light Waves. Concepts of Information, General Communication Systems, Evolution of Basic Fiber Optic Communication System, Benefits and Disadvantages of Fiber Optics. Transmission Windows. Transmission Through Optical Fiber, The Laws of Reflection and Refraction, Light Rays and Light Waves, Reflection of Light From Optical Surfaces, Refraction of Light From Optical Interfaces, The Numerical Aperture (NA), The Optical Fiber, Types of Fiber.	07L
UNIT-02	LOSSES IN OPTICAL FIBER:	07L
	Attenuation, Material Absorption Losses, Linear and Non Linear Scattering Losses, Fiber Bend Loss, Dispersion Viz. Inter Modal Dispersion and Intra Modal Dispersion, Overall Fiber Dispersion and Polarization, Dispersion Shifted and Dispersion Flattened Fibers, Attenuation and Dispersion Limits in Fibers, Kerr Nonlinearity, Self Phase Modulation, Combined Effect of Dispersion and Self Phase Modulation	
UNIT-03	FIBER MATERIAL, COUPLERS AND CONNECTORS:	06L
	Preparation of Optical Fiber: Liquid-Phase Techniques, Vapor Phase Deposition Techniques, Connector Principles, Fiber End Preparation, Splices, Connectors.	
UNIT-04	OPTICAL SOURCES AND DETECTORS : Sources: Basic Principle of Surface Emitter LED and Edge Emitter LED- Material Used Structure, Internal Quantum Efficiency and Characteristics, LASER Diode - Material Used Structure, Internal Quantum Efficiency and Characteristics, Working Principle and Characteristics of Distributed Feedback (DFB) Laser. Detectors: PIN Photodiode - Material Used, Working Principle & Characteristics, Avalanche Photodiode: - Material Used Working Principle and Characteristics.	05L
UNIT-05	ADVANCED TOPICS:	05L
	Optical TDM, SCM, WDM And Hybrid Multiplexing Methods, Fiber Optic Networks, Trans receivers for Fiber-Optic Networks, Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers (EDFAs).	
UNIT-06	OPTICAL NETWORKS:	06L
	Elements and Architecture of Fiber-Optic Network, SONET/SDH, ATM, IP, Optical Line Terminals	
Course Outcor		
Unon successfi	Il completion of the course, the students will be able to	
CO1: Learn	the basic elements of optical fiber transmission link fiber modes configurations and structures	
CO2: Unde	rstand the different kind of losses, signal distortion in optical wave guides and other signal degradation fac	tors.
CO3 [·] Learn	the fiber optical receivers such as PIN APD diodes, poise performance in photodetector, receiver o	peration and
confic	iuration	
CO4: Learn	, the various optical source materials, LED structures, quantum efficiencv. Laser diodes	
CO5: Understand the optical multiplexing techniques.		
CO6: Under	rstand the optical network and its architecture.	
Books and Ref	ferences	
1. Fiber Optic C	communications (Fifth Ed.) by J.C. Palais, Pearson Prentice Hall, 2005	
2. Optical Fiber	Communications (Third Ed.) by Gerd Keiser, McGraw-Hill, 2000	
3. Optical Netwo	orks: A Practical Perspective (Third Ed.) by R Ramaswamiand and K.N. Sivarajan, Morgan Kaufman Publi	shers

Course Name:	Engineering Economics and Accountancy	
Course Code:	HS-404	
Course Type:	Core	
Contact Hours/	Neek: 3L (Course Credits: 03
Course Object	ives	
Io impart ki	nowledge about the Economics and its applicability to the Engineers	
To introduce	e the fundamental concepts of economics	
To enable t	he students to understand the factors that causes the changes in economic conditions of the entrep	reneur
Unit Number	Course Content	Lectures
UNIT-01	Introduction to Engineering Economics: Definitions, Nature, Scope and application; Difference	06L
	between Micro Economics and Macro Economics; Theory of Demand & Supply: Meaning,	
	Determinants, Law of Demand, Elasticity of demand, Demand Forecasting, Law of Supply,	
	Equilibrium between Demand & Supply.	001
UNIT-02	Production and Cost: Production functions, isoquant, Least Cost combination, Laws of Returns to Scale Economics and Discooperation of Scale of production. Cost and Cost our too Returns	UOL
	to Scale. Economics and Diseconomies of Scale of production, Cost and Cost curves, Revenue	
	and Revenue curve, break even analysis.	051
0111-03	cost, Overhead cost, Cost control, Criteria of project appraisal, Social cost benefit analysis	UGL
UNIT-04	Markets: Meaning, Types of Markets, Characteristics (Perfect Competition, Monopoly,	05L
	Monopolistic Competition, Oligopoly) Price and Output Determination; Product Differentiation;	
	Selling Costs; Excess Capacity.	
UNIT-05	Money: Meaning, Functions, Types; Monetary Policy- Meaning, Objectives, Tools; Fiscal	04L
	Policy:-Meaning, Objectives, Tools.	
	Banking: Meaning, Types, Functions, Central Bank: its Functions, concepts CRR, Bank Rate,	
	Repo Rate, Reverse Repo Rate, SLR.	
UNIT-06	Depreciation: Meaning of depreciation, causes, object of providing depreciation, factors	04L
	affecting depreciation, Methods of Depreciation: Straight line method, Diminishing balance	
	method, Annuity method and Sinking Fund method	
UNIT-07	Financial Accounting: Double entry system (concept only), Rules of Double entry system,	06L
	Journal(Sub-division of Journal), Ledger, Irial Balance Preparation of final accounts-Irading	
	Account. Profit and Loss account, Balance Sheet.	
Course Outcor	nes I completion of the course the students will be oble to	
Opon successi	ul completion of the course, the students will be able to	
	is the chanenges of the economy as entrepreneur/manufacturer as well as consumer	
CO2. Desci	ncinciples of economics and economics and middle interviewer	
COA: Apply	principles of economics and accounting in attaining economic efficiency	
Books and Ref		
1 Principles	of Micro Economics by Mceachern & Kaur, Cengage Publication	
2. Manageria	I Economics by Craig Peterson & W Cris Lewis, PHI Publication	
3. Modern Mi	croeconomics by A. Koutsoviannis. Macmillan.	
4. Manageria	I Economics Theory and Applications by D. M. Mithani, Himalaya Publication House.	
5. Fundamen	tal of Managerial Economics by Mark Hirschey, South Western Educational Publishing.	
6. Engineerin	g Economics by Degramo, Prentice Hall.	
7. Financial A	Accounting-A Managerial Perspective by R. Narayanaswamy, PHI.	
8. Introductio	n to Accounting by J.R. Edwards and Marriot, Sage Publication.	
9. Cost Accor	unting by Jawahar Lal, Tata McGraw Hill.	
10. Project Pla	nning Analysis, Selection, Implementation and Review by Prasanna Chandra, Tata McGraw Hill	

Course Name:	Data Communication & Computer Networks	
Course Code:	EC-421	
Course Type:	Core	
Contact Hours/	Neek: 3L	Course Credits: 03
Course Object	ives	
To int	roduce basic concepts of Data communication with different models. Enumerate the physical laye	r, Data Link Layer,
Netw	ork Layer, Transport Layer and Application Layer, explanation of the function(s) of each layer.	
Unde	rstanding of switching concept and different types of switching techniques.	
Unit Number	Course Content	Lectures
UNIT-01	Introduction to Data Communication: Goals and Applications of Networks, Wireless Network,	04L
	Interfaces and services. Reference Models: The OSI reference model, TCP/IP reference model.	
UNIT-02	Physical Layer: Analog and Digital, Analog Signals, Digital Signals, Analog versus Digital, Data Rate	06L
	Limit, Transmission Impairments, Line Coding, Block Coding, Sampling, Transmission Mode,	
	Modulation of Digital Data, Telephone Modems, Modulation of Analog Signal, FDM, WDM, TDM,	
	Guided Media, Unguided Media, Switching.	
UNIT-03	Data Link Layer: Data Link Layer Design Issues, Services Provided to Network Layers, Framing,	06L
	Error Control, Flow Control, Error Detection and Correction, Elementary Data Link Protocols, An	
	Unrestricted Simplex Protocol, A Simplex Stop-and-Wait Protocol, Simplex Protocol for a Noisy	
	Channel, Sliding Window Protocols, A protocol using go-back-N, A Protocol using Selective Repeat,	
	Example Data Link Protocol-HDLC, PPP.	
UNIT-04	Medium Access Sublaver: Channel Allocations, Random Access, ALOHA, Carrier Sense	06L
	Multiple Access Protocols, Collision Free Protocols, Limited Contention Protocols, Controlled	
	Access. Channelization. Wired LANs: Ethernet. Wireless LANs.	
UNIT-05	Network Laver: Internetworks Addressing Routing ARP IP ICMP IPV6 Unicast Routing	051
	Unicast Routing Protocol. Multicast Routing, Multicast Routing Protocols.	UUL
UNIT-06	Transport Laver: Process to Process Delivery, User Datagram Protocol (UDP), Transmission	05L
	Control Protocol (TCP). Data Traffic. Congestion. Congestion Control. Quality of Service.	
	Techniques to Improve QOS. Integrated Services. QOS in Switched Networks	
UNIT-07	Application Laver: Design Issues of the Laver, Domain Name Systems, File Transfer, http.	04L
	Web Documents, Virtual Terminals.	•
Course Outcor	nes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Give the	e basic information of how a network can be designed, possible choice of various models for designi	ng a network.
CO2: Underst	and the protocol layer specific communication between two trusted entities.	
CO3: Analyse	e the possible attacks on a network to interrupt the transmission and mislead the communication	n between different
entities.	. the electron with every which date any he transmitted able to design a service method inv	
CO4: Analyse	e the shortest path over which data can be transmitted, able to design a routing protocol imp	plementing security
	for secure transmission of data from sender to the receiver.	
COS: Undersi COS: Design	and the subject based on course work, assignments and through implementation on a specific plant	along with secure
mechanisms	ensuring the error free transmission of data.	along with secure
Books and Re	erences	
1. Data Commu	nications and Networking by Behrouz A Ferouzan, TATA McGraw Hill.	
2. Data and Computer Communication by Stallings William, Pearson Education.		
3. An Engineering Approach on Computer Networking by S. Keshav, Addison Welsey.		
4. Introduction to Data Communications and Networking by Wayne Tomasi, Pearson.		
5. Computer Ne	tworks by A.S. Tanenbaum, PHI.	

Course Name:	Signal Processing for Image and Video	
Course Code:	EC-430	
Course Type:	Professional Elective-I	
Contact Hours/	Week: 3L	Course Credits: 03
Course Object	ives	
 To stu 	udy basic techniques for digital image and video processing.	
 To stu 	udy of techniques based on different models of the image and the type of application.	
 To ur 	iderstand linear and non-linear filtering, enhancement and restoration, coding as well as vision su	stems for industrial
and b	iomedical applications.	
 To ex 	tend the image analysis principles and techniques to video processing.	
Unit Number	Course Content	Lectures
UNIT-01	Fundamentals of Image Processing: Basic Steps of Image Processing System Sampling and	04L
	Quantization of an ImageBasic Relationship Between Pixels Image Transforms: 2D Discrete	
	Fourier Transform, Discrete Cosine Transform (DCT), Discrete Wavelet Transforms.	
UNIT-02	Image Processing Techniques: Image Enhancement: Spatial Domain Methods: Histogram	08L
	Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial	
	Filters Frequency Domain Methods: Basics of Filtering in Frequency Domain, Image Smoothing,	
	Image Sharpening, Selective Filtering Image Segmentation: Segmentation Concepts, Point, Line	
	and Edge Detection, Thresholding, Region Based Segmentation.	
UNIT-03	Image Compression: Image Compression Fundamentals-Coding Redundancy, Spatial and	08L
	Temporal Redundancy. Compression Models: Lossy and Lossless, Huffmann Coding, Arithmetic	
	Coding, LZW Coding, Run Length Coding, Bit Plane Coding, Transform Coding, Predictive Coding,	
	Wavelet Coding, JPEG Standards.	
UNIT-04	Basic Steps of Video Processing: Analog video, Digital Video, Time varying Image	08L
	Formation Models : 3D Motion Models, Geometric Image formation, Photometric Image	
	Formation, Sampling of Video Signals, Filtering Operations.	
UNIT-05	2-D Motion Estimation: Optical Flow, General Methodologies, Pixel Based Motion Estimation,	08L
	Block Matching Algorithm, Mesh Based Motion Estimation, Global Motion Estimation, Region	
	Based Motion Estimation, Multi Resolution Motion Estimation. Waveform Based Coding, Block	
Course Outee	Based Transform Coding, Predictive Coding, Application of Motion Estimation in Video Coding.	
Course Outcoi	nes	
CO1: Croate c	in completion of the course, the students will be able to	
CO1. Create s	imple video processing systems	
CO3: Compar	e image processing systems	
CO4: Compar	e video processing tools	
CO5: Select a	ppropriately optimal image and video processing tools	
CO6: Use Mat	Lab to perform fundamental image processing applications such as image filtering	
CO7: Use Mat	Lab to perform video processing applications such motion estimation	
Books and Ref	ferences	
1. Digital Im	age Processing by Gonzaleze and Woods (Third Ed.), Pearson.	
2. Video Pro	ocessing and Communication by Yao Wang, Joem Ostarmann and Ya –Quin Zhang, PHI.	
3. Digital Vie	deo Processing by M. Tekalp, PHI.	

Course Name:CAD of Integrated CircuitsCourse Code:EC-431Course Type:Professional Elective-I

Contact Hours/Week: 3L

Course Credits: 03

Course Objectives

- To impart knowledge about the fundamentals of computer aided design tools for the modeling, design, analysis of VLSI systems.
- To introduce the fundamental concepts relevant to test, verification of VLSI systems.
- To enable the students to understand the FPGs based synthesis.

Unit Number	Course Content	Lectures
UNIT-01	Introduction to Hierarchical and Structured Design: Role of CAD Tools in the VLSI design process, CAD Algorithms for switch level and circuits simulation, Techniques and algorithms for	04L
	symbolic layout, Algorithms for physical design – Placement and routing Algorithms, Compaction, Circuit extraction and Testing.	
UNIT-02	Specification of Combinational Systems Using HDL: Introduction to HDL, Basic language element of HDL, Behavioral Modeling, Data flow modeling, Structural modeling, Subprograms and HDL description of gates, Barrel shifters, arithmetic and logic units, Binary decoder, Binary encoder, Multiplexers applications, Floating Point arithmetic-representation of floating point number, Floating point multiplication, Adders, Multipliers.	06L
UNIT-03	Language Constructs and their Hardware Synthesis: Digital hardware modeling: logic and system level modeling, Hardware description languages, RTL simulation, Synchronous and asynchronous system design.	07L
UNIT-04	Design of Sequential Circuits: Shifters, Design of a Serial adder, Serial multiplier, Booth's multiplier, Sequential detectors, Vending machines, Signed and unsigned multipliers, Design of a binary divider.	07L
UNIT-05	Data Subsystems: Storage modules, Functional modules, Data paths, Control subsystems, Micro programmed controller, Memory subsystem, static timing analysis, Processors, Operation of the computer and cycle time.	06L
UNIT-06	FPGA based synthesis: Multilevel logic synthesis, Logic optimization, Logic simulation, Compiled and event simulators, Relative advantages and disadvantages, Xilinx Zynq FPGA architecture, Features and applications, Design considerations of SoC and FPGA synthesis, Introduction to testing and DFT.	06L
Course Outcor	mes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Estab	lish comprehensive understanding of the various phases of CAD for digital electronic systems	s, from digital logic
simula	ation to physical design, including test and verification.	

- CO2: Demonstrate knowledge and understanding of fundamental concepts in CAD.
- CO3: Demonstrate the knowledge of computational and optimization algorithms and tools applicable to solving CAD related problems.

Books and References

- 1. A VHDL Primer by J. Bhaskar, Addison Wesley, 1999
- 2. Verilog HDL by Joseph Yiu, Samir Palnitkar (Second Ed.), Pearson Education, 2004.
- 3. Digital System Design using VHDL by H. Roth, PWS Publishing.
- 4. Synthesis and Optimization of Digital Circuits by G. DeMicheli, McGraw Hill.
- 5. Digital Design-Principles and Practices by J.F. Wakerly, PHI
- 6. VHDL by Douglas Perry, McGraw Hill.

Course Name: Electronics Device Modeling Course Code: EC-432 Course Type: Professional Elective-I

Contact Hours/Week: 3L

Course Objectives

- To bring home knowledge of basics and fundamentals of electronics device modeling.
- Build upon the theoretical, mathematical and physical analysis of electronic devices used in VLSI, for proper understanding of e-circuit design, simulation and working.
- To provide students with an opportunity to understand and practice on SPICE platform.

Unit Number	Course Content	Lectures
UNIT-01	Introduction to Device Modeling: Introduction, physical significance of device modeling,	05L
	various devices used in device modeling. Material used in device modeling. Trends & projections	
	in device modeling.	
UNIT-02	Junction Diodes: Depletion region of a p-n junction, Depletion-region capacitance, DC, small	08L
	signal, large signal, high frequency model of diodes. Measurement and extraction of diode	
	model parameters.	
		051
UNIT-03	Bipolar Junction Transistors: DC, small signal, nigh frequency models of bipolar junction	05L
	transistors. Ebers Moli model. Extraction of BJ1 model parameters, transistor requency	
	Tesponse.	
UNIT-04	MOSFETs: MOSFET fundamentals, Types of MOSFETs, Concept of threshold voltage, Large	08L
	signal behavior MOSFETs, Comparison of operating regions of Bipolar and MOS Transistors,	
	Shichman Hodges and Level-1 MOS Models, Introduction to Charge–Sheet Models.	
UNIT-05	Short & Narrow Channel Effects in MOSFETs: Velocity saturation from horizontal field,	05L
	Mobility degradation from the vertical field, Weak Inversion in MOS Transistors, Narrow & Short	
	Channel Effects in MOSFETs.	
UNIT-06	Modern VLSI Devices: Principle of hetro-junction devices, High speed devices compound	05L
	devices, opto devices.	
Course Outcor	nes	
Upon successfu	Il completion of the course, the students will be able to	
CO1: Comprehend the insight of electronic devices so as to provide appropriate and economically viable solutions to electronics		
engineering community and society at large.		
CO2: Identify the new state of art electronic devices models to solve the real world research problems.		
CO3: Apply principles of usage of EDA tools & techniques for experimentation for effective & efficient design of e-devices in particular		
& e-circuits in general.		

CO4: Assess performance of electronic devices without actual fabrication so as to deal with e-designing for practical aspects and generate interest and competence in self-directed continuing professional development.

Books and References

- 1. CMOS Digital Integrated Circuits-Analysis & Design by S.M. Kang & Y. Leblibici, TMH.
- 2. Physics of Semiconductor Devices by S.M. Sze, Wiley Pub.
- 3. Introduction to PSPICE by H.M. Rashid, PHI.
- 4. Solid State Electronic Devices by B.G. Streetman & S. Baneerjee, PHI.

Course Name:MEMS and Sensor DesignCourse Code:EC-433Course Type:Professional Elective-I

Contact Hours/Week: 3L

Course Objectives

- To impart knowledge about the need and applications of microsystem in engineering.
- To introduce the fundamental concepts relevant to fabrication and machining process of MEMS sensors and actuators.
- To enable the students to understand the various sensing and actuation mechanisms.
- To enable the students to design, analysis, fabrication, characterization of MEMS technology based devices

Unit Number	Course Content	Lectures
UNIT-01	Introduction: Introduction to MEMS and Microsystems, MEMS Classification, MEMS versus	05L
	Microelectronics, Applications of MEMS in Various Industries, Some Examples of Microsensors,	
	Microactuators, and Microsystems, Materials for MEMS, Laws of Scaling in miniaturization	
UNIT-02	MEMS Fabrication: Structure of Silicon, Single Crystal Growth Techniques, Photolithography, Oxidation,	10L
	Diffusion, Ion Implantation, Physical Vapor Deposition, Chemical Vapor Deposition, Bulk Micromachining:	
	Overview of Etching, Isotropic and Anisotropic Etching, Wet Etchants, Etch Stop Techniques, Dry Etching,	
	Surface Micromachining, LIGA, SLIGA, Wafer Bonding, Electroplating	
UNIT-03	Microsensors and Microactuators: Basic Modeling Elements in Mechanical, Electrical and Thermal	12L
	Systems, Types of Beams: Fixed-Free (Cantilevers), Fixed-Fixed (Bridges), Fixed-Guided beams,	
	Electrostatic sensing and Actuation: Parallel plate capacitor, Applications of parallel plate capacitors:	
	Inertial sensor, Pressure sensor, Flow sensor, Parallel plate Actuators, Piezoresistive Sensors: Origin and	
	Expressions of Piezoresistivity, Piezoresistive Sensor Materials, Applications of Piezoresistive Sensors,	
	Piezoelectric Sensing and Actuation, Thermal Sensing and Actuation: Sensors and Actuators based on	
	Thermal Expansion, Thermocouples, Thermoresistors, Shape Memory Alloy, Applications: Inertial	
	sensors, Flow sensors, Infrared sensors	
UNIT-04	Layout, Simulation Tools, Packaging and Characterization techniques: Introduction of layout,	04L
	Simulation Tools, Packaging and Various Characterization Techniques for MEMS Devices	
UNIT-05	RF-MEMS: MEMS devices for RF Applications: High-Q Capacitors and Inductors and Their	05L
	Applications in RF Circuits, Mechanical, Electromechanical and Electromagnetic modeling of SPS1,	
	SPDT devices and their applications	
Course Outco	mes	
Opon successi	the tructural and exertificial materials for MEMS	
	ity structural and sacrificial materials for MEMS.	
CO2. Desc	unde the fablication steps in designing of various MEMS devices.	
CO3. Apply	principles for the design of Sensor and actuators.	
Books and Bo		
1 MEMS and	Hieroevstems design and manufacture by Tai-Ran Heu. Tata McGraw Hill	
2 MEMS by	N P Mahalik Tata McGraw Hill	
3 Foundation	ns of MEMS by Chang Liu. Pearson Prentice Hall	
4 Sensors a	nd Transducers by M. J. Usher, McMillian Hamnshire	
5 Analysis a	nd Design Principles of MEMS Devices by Minhang Bao. Elsevier	
6. Fundamer	itals of Microfabrication by M. Madou, CRC Press.	
7. Microsens	ors by R.S. Muller, Howe, Senturia and Smith, IEEE Press.	
8. Semicondu	uctor Sensors by S. M. Sze, Willy Inderscience Publications.	

Course Name:Advanced IC DesignCourse Code:EC-434Course Type:Professional Elective-I

Contact Hours/Week: 3L

Course Objectives

• To impart strong foundation of IC based design.

• To introduce the various applications of operational amplifiers and its integration with other devices.

• To learn biomedical application of op-amp design and other related applications.

Unit Number	Course Content	Lectures
UNIT-01	Operational Amplifier Design using CMOS as well as Bipolar technologies. Linear and non-	07L
	linear applications of operational amplifiers. Active filters, response characteristics of Butter	
	worth, Chebyshev and causal filters. Design and analysis of higher order filters of all types.	
UNIT-02	Design of Super Buffer Circuits for driving large capacitive loads. Design and analysis of	06L
	CMOS Schmitt trigger circuit.	
UNIT-03	Comparators and their characteristics zero crossing detector, voltage limiters, absolute value	07L
	detectors, sample and hold circuit.	
UNIT-04	Biomedical applications of instrumentation amplifier. Design and analysis of multi-vibrator	05L
	circuits using transistors, Op-Amps and 555 Timer.	
UNIT-05	Design and analysis of oscillator circuits using transistors and Op-Amps. Phase shift, Wien	06L
	Bridge and quadrature oscillators. Square wave, triangular wave, saw tooth wave generators	
	and voltage controlled oscillator.	
UNIT-06	Differential and Feedback Amplifiers	05L
0	· · · · · · · · · · · · · · · · · · ·	

Course Outcomes

Upon successful completion of this course students will be able to :

CO1: Understand and design the advanced ICs using op-amp and perform operations and their troubleshooting

CO2: To learn how to detect, amplify, store, create and manipulate signals using operational amplifiers

CO3: To design and analyze the responses of IC based designed circuits in the area of power management, signal conditioning, analog and digital communication

CO4: To develop IC based projects in the above areas.

Books and References

1. CMOS Analog Circuit Design by P. E. Allen and D. R. Holberg

2. CMOS Digital Integrated Circuits-Analysis & Design by S. M. Kang & Y. Leblebici, Tata McGraw Hill

3. Design of Analog CMOS Integrated Circuits by B. Razavi, Tata McGraw Hill

Course Name: **Optimization Techniques** Course Code: **EC-435** Course Type: **Professional Elective-I**

Contact Hours/Week: 3L

Course Objectives

- To teach basics and fundamentals of optimization.
- To build upon the theoretical and mathematical models for optimization techniques.
- To provide students with an opportunity to understand and practice optimized designing.

Unit Number	Course Content	Lectures
UNIT-01	Single Variable Non-Linear unconstrained optimization: One dimensional Optimization	07L
	methods, Uni-modal function, Elimination methods, Fibonacci method, Golden section method,	
	Interpolation methods, Quadratic & cubic interpolation methods.	
UNIT-02	Multi Variable Non-linear unconstrained optimization: Direct search method - Univariant	08L
	method, pattern search methods, Powell's- Hook -Jeeves, Rosenbrock search methods-	
	Gradient methods, Gradient of function, Steepest decent method, Fletcher Reeves method,	
	Variable metric method.	
UNIT-03	Linear Programming: Formulation-Sensitivity analysis, Change in the constraints, Cost	05L
	coefficients, Coefficients of the constraints, Addition and deletion of variable, Constraints.	
UNIT-04	Integer Programming: Introduction – formulation, Gomory cutting plane algorithm, Zero or one	08L
	algorithm, Branch and bound method , Stochastic programming, Basic concepts of probability	
	theory, Random variables-distributions-mean, Variance, Correlation, Co-variance, Joint	
	probability distribution, Stochastic linear, Dynamic programming.	
UNIT-05	Geometric Programming: Polynomials, arithmetic, Geometric inequality, Unconstrained, Non-	08L
	traditional optimization Techniques: Genetic Algorithms-Steps-Solving simple problems	
	Comparisons of similarities and dissimilarities between traditional and non-traditional techniques,	
	Particle Swarm Optimization.	

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Comprehend the insight of optimization requirements for any system.

CO2: Identify the conventional and new state of the art optimization techniques.

CO3: Apply principles of usage of optimization techniques for electronic design.

CO4: Assess and analyse the performance of optimized designs.

Books and References

1. Optimization Theory & Applications by S. S. Rao, John Wiley & Sons, 1978.

2. Optimization for Engineering Design: Algorithms and Examples by K. Deb, Prentice Hall India Learning Private Limited, 2012.

3. Optimization: Theory and Practice by M. C. Joshi and K. M. Moudgalya, Cambridge Alpha Science International Ltd., 2004.

Course Name: Electronic Measurement and Instrumentation Course Code: EC-450 **Professional Elective-II**

Course Type:

Contact Hours/Week: 3L

Course Objectives

- · To introduce the various methods of instrumentation and parameters
- To impart knowledge about the various AC and DC measurement instruments
- To enable the students to understand the various types and transducers, display and indicating devices, signal generators and their use for measurements

Unit Number	Course Content	Lectures
UNIT-01	Instrumentation Scheme & Characteristics: Definition, Application and Methods of	07L
	Measurements, Instrument Classification, Functional Elements of an instrument, Input Output	
	Configuration of Measuring Instruments, Methods of Correction for Interfering and Modifying	
	Inputs, Standards, Calibration, Accuracy, Precision, Loading Effects, Selection of Instruments,	
	Measurement Systems-Static and Dynamic Characteristics, Zero Order, First Order and Second	
	Order Systems and their Response	
UNIT-02	Error analysis: Types of Errors, Methods of Error Analysis, Uncertainty Analysis, Statistical	07L
	Analysis, Gaussian Error Distribution, Rejection of Data, Method of Least Square, Curve Fitting,	
	Graphical Analysis, General Consideration in Data Analysis	
UNIT-03	DC & AC Measurement: Analog Ammeter, Voltmeter and Ohmmeters, PMMC, Moving Iron,	05L
	Electro-dynamometer, Electrostatic, Ohmmeter, Digital type voltmeter, AC Voltmeter using	
	Rectifier, True RMS Voltmeter, Digital VOM Meter	
UNIT-04	Transducers: Principles, Classification, Guidelines for Selection, Requirements, Types and	08L
	Application of Transducers, Resistance, Capacitance, Inductance Transducers, Potentiometer,	
	Strain Gauges, LVDT, Piezo Electric Transducers, Resistance Thermometers, Thermocouples,	
	Thermistors, Photosensitive Device, Capacitive Transducer, Hall Effect Transducers, Pyroelectric	
	Sensors, Thermo Sensors using Semiconductor Devices, Thermal Radiation Sensor,	
	Measurement of Force, Pressure, Velocity, Humidity, Moisture, Speed, Proximity and	
	Displacement	
UNIT-05	Display and Indicating Devices: Telemetry and Remote sensing, Geographical Information	04L
	System, Digital Display Devices and Recorders, CRO	
UNIT-06	Signal Generators and Analyzers: Function Generators, RF Signal Generators, Sweep	05L
	Frequency Generator, Frequency Synthesizer, Wave Analyzer, Harmonic Distortion Analyzer,	
	Spectrum Analyzer	

Course Outcomes

Upon successful completion of the course, the students will be able to

CO1: Describe basic principles of instrumentations and measurements associated with engineering, design and the general technology applications

- CO2: Use and calibrate common errors in instruments and their analysis.
- CO3: Selecting appropriate sensors, instruments, display devices and analyzers for the task under consideration.
- CO4: Understanding various transducers available, their operating principles, strengths and weaknesses.
- CO5: Select optimum transducer, analyzers and display devices to assemble a system for routine measurements of environmental and dynamic phenomena

Books and References

- 1. Modern Electronic Instrumentation and Measurement Techniques by A.D. Helfrick and W.D. Cooper, Prentice Hall.
- 2. Instruments and Measurements by C.N. Herrick, Mc Graw Hill.
- 3. Electrical and Electronic Measurements and Instrumentation by A. K Sawhney, Dhanpat Rai Publishing.

Course Name:	RF IC Design	
Course Code:	EC-451	
Course Type:	Professional Elective-II	
Contact Hours/	Week: 3L	Course Credits: 03
Course Object	ives	
 To impart k 	nowledge about Characteristics of Passive IC Components at RF Frequencies, High Frequency An	nplifier Design, Low
Noise Ampl	ifier Design, Mixers, RF power amplifiers, Oscillators & synthesizers.	
Unit Number	Course Content	Lectures
UNIT-01	Characteristics of Passive IC Components at RF Frequencies: Interconnects, Resistors,	06L
	Capacitors, Inductors and Transformers – Transmission lines, Noise – classical two-port noise	
	theory, Noise models for active and passive components.	
UNIT-02	High Frequency Amplifier Design: Zeros as bandwidth enhancers, Shunt-series amplifier, FT	06L
	doublers, Neutralization and Unilateralization.	
UNIT-03	Low Noise Amplifier Design: LNA topologies, Power constrained noise optimization, Linearity	06L
	and large signal performance.	
UNIT-04	Mixers: Nonlinear systems as linear mixers, Multiplier-based mixers, Subsampling mixers,	06L
	Diode-ring mixers.	
UNIT-05	RF power amplifiers: Class A, AB, B, C, D, E and F amplifiers, Modulation of power amplifiers,	05L
	Design and linearity considerations.	
UNIT-06	Oscillators & synthesizers: Basic topologies, VCO, Describing functions, Resonators,	07L
	Negative resistance oscillators, Synthesis with static moduli, Synthesis with dithering moduli,	
	Combination synthesizers – Phase noise considerations.	
Course Outcor	nes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Unde	rstand the Characteristics of Passive IC Components at RF Frequencies.	
CO2: Desig	n and analyse the High Frequency Amplifier.	
CO3: Desig	in and analyse Low Noise Amplifier and Mixers	
CO4: Design and analyse RF power amplifiers		
CO5: Desig	in and analyse Oscillators & synthesizers.	
Books and Rei	ferences	0004
1. The Design	of CMOS Radio-Frequency Integrated Circuits by Thomas H. Lee, 2nd Ed., Cambridge University F	ress, 2004.
2. RF Microelectronics by Behzad Razavi, 2nd Ed., Prentice Hall, 1998.		
3. Integrated (Circuits for Wireless Communications by A.A. Abidi, P.R. Gray and R.G. Meyer, IEEE Press, 1999.	
4. RF Circuit D	Jesign, Theory and Applications by R. Ludwig and P. Bretchko, Pearson, 2000.	

Course Name:	Radar and Navigational Aids		
Course Code:	EC-452		
Course Type:	Professional Elective-II		
Contact Hours/	Week: 3L	Course Credits: 03	
Course Object	ives		
To introduce	e the basic functioning of a radar system and to make the students understand this by taking a spec	cific example of MTI	
and PULSE	Doppler radar.		
 Implement t 	he usage of these systems with the help of Navigation Aids.		
Unit Number	Course Content	Lectures	
UNIT-01	Introduction: Introduction to Radar, Applications of Radar, Radar Frequencies, Working	10L	
	Principle of Radar, Radar block diagram, Simple form of Radar Equation, Minimum detectable		
	signal, Range to a target, Pulse repetition frequency and range ambiguities.		
UNIT-02	Radar System: Maximum radar range, Detection of Signals in Noise, Receiver noise and SNR,	06L	
	Integration of radar pulse, Radar cross section of targets, RADAR detection, Range & Doppler		
	measurements, tracking.		
UNIT-03	MTI and Pulse Doppler Radar: Concept of Doppler Effect, Introduction to Doppler and MTI	10L	
	Radar, Doppler frequency shift, CW Doppler radar, MTI radar, Delay line cancellers, Staggered		
	PRF, pulse Doppler radar, FM-CW radar, Tacking Radar, Sequential lobing, Conical Scan,		
	Monopulse, Acquisition, Comparison of Track, Detection of Radar signals in noise, Matched filter		
	criterion-detection criterion, Extraction of information and waveform design, Propagation of radar		
	waves, Radar clutter.		
UNIT-04	Navigation Aids: Radio Direction Finding, Loop Antenna, Loop Input Circuits, Aural Null	12L	
	Direction Finder, Goniometer, Errors in Direction Finding, Adcock Direction Finders, Direction		
	Finding at Very High Frequencies, Automatic Direction Finders, Commutated Aerial Direction		
	Finder, Range and Accuracy of Direction Finders Radio Ranges, LF/MF Four course Radio		
	Range, VHF Omni Directional Range(VOR), VOR Receiving Equipment, Range and Accuracy of		
	VOR, Recent Developments, Global Positioning System (GPS).		
Course Outcor	nes		
Upon successf	ul completion of the course, the students will be able to		
CO1: Understand the basic working of RADAR.			
CO2: Understand the working of a Moving target Indicator (MTI) on the basis of Doppler shift.			
Understand the working of a MII, Pulse Doppler Radar and Tracking radar			
CO4: Unde	rstand and identify different Navigational Techniques and Aids		
Books and Rei	rerences		
1. Introduction	to kadar Systems by Skolnik, Lata McGraw Hill.		
2. Electronic Navigation by Nagaraja, Tata Woolaw Thil. 2. Padar Principles by Poyton 7. Deebles, John Wiley and Sons (2004)			
5. Radar Princ	 Tradar Entropics by Feyton 2. Feebles, John Wiley and Sons (2004). Deder Foundation for Imaging 8 Advanced Concents by D. L. Sulliver, D. H. 2004. 		
4. Radar Foundation for Imaging & Advanced Concepts by R.J Sullivan, PHI, 2004.			

Course Name:	Artificial Intelligence and Deep Learning
Course Code:	EC-453
Course Type:	Professional Elective-II

Contact Hours/Week: 3L

Course Credits: 03

Course Objectives

• To impart knowledge about the Artificial Neural networks and deep learning.

- To introduce the fundamental concepts relevant to ANN architectures and deep learning algorithms.
- To introduce applications and usage of deep learning architectures

Unit Number	Course Content	Lectures	
	Introduction: History of Deen Learning, Deen Learning fundamentals, Training Deen Architectures	051	
UNIT-UT	Introduction. History of Deep Learning, Deep Learning fundamentals, Training Deep Architectures,	UJL	
	Internetiate Representations. Sharing realures and Abstractions across rasks, Signou Neurons, Gradient Decent Feed forward Neural Networks, Dronout, Back propagation, Pagularization, Batch		
	oraulent Decent, Feed forward Neural Networks, Dropout, Back propagation, Regularization, Batch		
	Deep learning with Tencer flow: Dringing component Analysis and its interpretations. Singular	081	
UNIT-02	Value Decomposition Cready Lever wise Dre training Patter activations. Singular	UOL	
	Lipitialization methods. Batch Normalization Introduction of deep learning. How deep learning		
	works Introduction to Tensor flow		
	Deep Learning Algorithms: Gradient Descent and Pack propagation. Improving doop notwork	001	
0111-03	Multi-Laver Neural Networks CNN Deep Concrative Architectures Mini-hatches Unstable	052	
	Gradients and Avoiding Overfitting Applying deep net theory to code Introduction to convolutional		
	neural networks for visual recognition		
LINIT-04	Advanced Deen Architectures: RNNs RNNs in practice LSTMs and GRUs LSTMs and GRUs in	061	
	practice Reinforcement Learning GANs	UUL	
UNIT-05	Natural Language Processing: Natural Language Processing and understanding. Word Vectors.	05L	
	Basic RNN Models. Attention based models. evaluation functions.		
UNIT-06	Applications of deep learning: Self-driving cars, healthcare, voice services, translation, text and	03L	
	audio generation, image recognition, advertising and finance.		
Course Outco	mes		
Upon successf	ul completion of the course, the students will be able to		
CO4: Desc	ribe the key components of AI field and its relation and role in computer science.		
CO5: Apply	architectures and optimize parameters to practical objectives.		
CO6: Unde	rstand the use cases and build solutions to unsolved problems.		
Books and Re	ferences		
1. Deep Lear	ning: Methods and Applications by Li Deng and Dong Yu.		
2. Neural Ne	tworks and Deep Learning by Michael Nielsen.		
3 Hands-On Learning with Scikit-Learn and Tensor flow by Aurelien Geron, Oreilly			
Pattern Recognition and Machine Learning by Christonher Risbon			
F Deen Lee	reing by lan Coodfellow and Vachus Dangie and Asran Counville. An MIT Press Dack		
5. Deep Learning by ian Goodfellow and Yoshua Bengio and Aaron Courville, An Mill Press Book.			

Course Name:	Reliability Engineering		
Course Code:	EC-454		
Course Type:	Professional Elective-II		
Contact Hours/	Neek: 3L	Course Credits: 03	
Course Object	ives		
 To int 	roduce the concepts of Reliability in engineering with different mathematical models. To study differ	ent types of system	
along	with their evaluation.	,, ,	
 To stu 	udy Reliability improvement and gain knowledge about maintainability and availability of the system		
Unit Number	Course Content	Lectures	
UNIT-01	Reliability: Introduction to Reliability, Definition of Reliability, Reliability Components and Their	09L	
	Classifications, Reliability Measures, Failure Data Analysis, Failure, Causes of Failures, Characteristic		
	and Types of Failures, Causes and Modes of failures, Components and Systems, Hazards and its		
	Models, Distribution Function (i) Normal (ii) Log-normal (iii) Exponential and Wibull and their		
	Importance in Reliability Theory.		
UNIT-02	Reliability Evaluation: Introduction to System Reliability for Non-Maintained and Maintained System	06L	
	having Functional Blocks in (i) Series (ii) Parallel (iii) Series Parallel (iv) Non Series Parallel.		
UNIT-03	Reliability Improvement: Improvement of Components: Redundancy, Stand by with Perfect and	07L	
	Imperfect Switching, Comparison of Component Redundancy to System Redundancy, Optimization,		
	Redundancy Techniques for Reliability Optimization.		
UNIT-04	Maintainability: Concept and Definition of Maintainability, Objective of Maintenance,	07L	
	Classification of Maintenance, Measures of Maintainability, Factors Effecting Maintenance		
	Levels, Maintenance Personnel, Preventive Maintenance, Provisioning of Spares.		
UNIT-05	Availability: Concept and Definition of Availability, Types of Availability, Measure of Availability	07L	
	and Factors Affecting it.		
Course Outcor	nes		
Upon successfu	ul completion of the course, the students will be able to		
CO1: Give t	the basic information of how reliability theory and its models.		
CO2: Under	rstand the reliability evaluation.		
CO3: Analyse various methods for reliability improvement.			
CO4: Understand the concept of maintainability along with its classifications.			
CUD: Analysis of Availability concept.			
Dours and References			
2 Reliability Engineering by K. K. Aganwal, Springer			
2. INCHAUIIILY	Engineering by N. K. Agaiwai, Opiniger. Engineering by A. K. Govil. Tata McGraw. Hill		

Course Name:Computer Architecture And OrganizationCourse Code:EC-455

Course Type: Professional Elective-II

Contact Hours/Week: 3L

Course Credits: 03

Course Objectives

- To conceptualize the basics of organizational and architectural issues of a digital computer
- To analyze processor performance improvement using instruction level parallelism.
- To study various data transfer techniques in digital computer.

,		
Unit Number	Course Content	Lectures
UNIT-01	Basics of Computer Architecture: Codes, Number System, Logic gates, Flip flops, Registers,	05L
	Counters, Multiplexer, Demultiplexer, Decoder, Encoder etc, Register transfer, Bus & memory	
	transfer, Logic micro operations, and Shift micro operation.	
UNIT-02	Basic Computer Organization: Instruction codes, Computer instructions, Timing & control,	07L
	Instruction Cycles, Memory reference instruction, Input/output and Interrupts, Complete	
	computer description & design of basic computer.	
UNIT-03	ARM Processor Fundamentals: AR M core data flow model, Architecture, ARM General	08L
	Purpose Register set, Exceptions, Interrupts, Vector Table, ARM processors family.	
UNIT-04	Central Processing Unit: General register organization, Stack organization, Instruction format,	07L
	Data transfer & manipulation, Program control, RISC, CISC, Addition & subtraction,	
	Multiplication Algorithms, Division algorithms, Peripheral devices, I/O interface Data transfer	
	schemes, Program control, Interrupt, DMA transfer, I/O processor.	
UNIT-05	Memory Unit: Memory hierarchy, Processor vs. memory speed, High-speed memories, Cache	05L
	memory, Associative memory, Interleave, Virtual memory, Memory management.	
UNIT-06	Introduction to Parallel Processing: Pipelining, Characteristics of multiprocessors,	04L
	Interconnection structures, Inter-processor arbitration, Inter-processor communication &	
	synchronization.	
Course Outcomes		

Upon successful completion of the course, the students will be able to

CO1: Identify and compare different methods for computer I/O mechanisms.

CO2: Categorize memory organization and explain the function of each element of a memory hierarchy.

CO3: Demonstrate control unit operations and conceptualize instruction level parallelism.

Books and References

1. Computer System Architecture by Morris M. Mano and Yu Dong, Prentice Hall.

2. Computer Architecture A Quantitative Approach by J. L. Hennessy, D. A. Patterson and D. Goldberg, 3rd ARM Edition.

- 3. Computer Architecture and Organization by J. P. Hayes, McGraw Hill.
- 4. System Architecture: Software and Hardware Concepts by W. E. Leigh and D. L. Ali, South Wester Publishing.

Course Name:Spread Spectrum and CDMACourse Code:EC-440Course Type:Professional Elective-III

Contact Hours/Week: 3L

Course Objectives

- To impart knowledge about the basic spread spectrum techniques that are used in CDMA based cellular communication systems, including direct sequence spread spectrum and frequency-hopped spread spectrum.
- To introduce the fundamental mathematical concepts relevant to design aspects of the PN sequence generators.
- To enable the students to understand the factors that affect the practical implementation of IS-95, CDMA-2000 and WCDMA systems

Unit Number	Course Content	Lectures
UNIT-01	Introduction: Concept of Multiple Access Systems, Narrowband and Broadband Systems,	02L
	Advantages of Spread Spectrum Systems.	
UNIT-02	Principles of Direct Spread Spectrum: Direct Spectrum System: Definition and Concepts,	10L
	Spreading Sequences and Waveforms, Random Binary Sequence, Shift-Register Sequences,	
	Periodic Auto Correlations, Polynomials over The Binary Field, Systems with PSK Modulation, Power	
	Spectral Density of DSS-CDMA, Pulsed Interference, De-Spreading with Matched Filter.	
UNIT-03	Spreading Code Acquisition and Tracking: Initial Code Acquisition, Acquisition Strategy: Serial	06L
	Search, Parallel Search, Multi-Dwell Detection, False Alarm and Miss Probability for Matched Filter	
	Receiver, False Alarm and Miss Probability for Radiometer, Mean Overall Acquisition Time for Serial	
	Search.	
UNIT-04	Performance of Spread Spectrum System: Link Performance of Direct Sequence Spread	06L
	Spectrum CDMA In (I) Additive White Noise Channel (Ii) Multipath Fading Channel. Concept of	
	Rake Receiver, Performance of RAKE Receiver in Multipath Fading.	
UNIT-05	Frequency Hoped Systems: Concepts and Characteristics, Modulations, MFSK, Hybrid	06L
	Systems, Frequency Synthesizers, Direct Frequency Synthesizer, Digital Frequency	
	Synthesizer, Indirect Frequency Synthesizers.	
UNIT-06	CDMA systems: CDMA-IS-95: Forward link Channels, Reverse link Channels, Power Controls	06L
	and Handoff Procedure in IS-95, Overview of CDMA based 3G Systems (CDMA-2000 and	
	WCDMA).	
Course Outco	mes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Identify spread spectrum techniques that are used in CDMA based cellular communication systems, including direct		
sequence spread spectrum and frequency-hopped spread spectrum.		
CO2: Apply	22: Apply the principles of linear algebra to design PN sequence generators.	
CO3: Analy	ze the performance of CDMA systems in various wireless Channels	
CO4: Asse	ss thepractical implementation of IS-95, CDMA-2000 and WCDMA systems	
Books and Re	ferences	

1. Principles of Spread Spectrum Communication Systems by Don Torrieri, Springer Science & Business Media, Inc.

- 2. CDMA: Principles of Spread Spectrum Communication by Andrew J. Viterbi, Addison- Wesley Publishing Company.
- 3. Introduction to CDMA Wireless Communications by Mosa Ali Abu-Rgheff, Elsevier Academic Press.
- 4. Code Division Multiple Access-CDMA by R. Michael Buehrer, Morgan & Claypool Publishers Series.
- 5. CDMA Systems Engineering Handbook by Jhong S. Lee and Leonard E. Miller, Artech House Publishers.
- 6. IS-95 CDMA and CDMA-2000 by Vijay K Garg, Pearson Education.
- 7. OFDM for Wireless Communications Systems by Ramjee Prasad, Artech House, Inc.

Wireless Sensor Networks Course Name: Course Code: EC-441

Professional Elective –III Course Type:

Contact Hours/Week: 3L + 1T

Course Credits: 04

Course Objectives

- To impart knowledge about wireless sensor networks and its application area.
- To introduce the fundamental concepts relevant to deployment and localization of wireless sensor networks.
- To enable the students to understand the synchronization and dissemination of information using wireless sensor network about the target area.

Unit Number	Course Content	Lectures
UNIT-01	Introduction: Wireless Sensor Networks: The Vision, Networked Wireless Sensor Devices,	06L
	Applications of Wireless Sensor Networks, Key Design Challenges,	
UNIT-02	Network Deployment: Structured Versus Randomized Deployment, Network Topology, Connectivity	06L
	in Geometric Random Graphs, Connectivity using Power Control, Coverage Metrics, Mobile	
	Deployment,	
UNIT-03	Localization And Time Synchronization: Key Issues, Localization Approaches, Coarse-Grained	08L
	Node Localization Using Minimal Information, Fine-Grained Node Localization Using Detailed	
	Information, Network- Wide Localization, Theoretical Analysis of Localization Techniques, Key Issues	
	of Time Synchronization, Traditional Approaches, Fine-Grained Clock Synchronization, Coarse	
	grained Data Synchronization,	
UNIT-04	Wireless Characteristics And Medium-Access: Wireless Link Quality, Radio Energy	10L
	Considerations, The SINR Capture Model For Interference, Traditional MAC Protocols, Energy	
Efficiency In MAC Protocols, Asynchronous Sleep Techniques, Sleep-Scheduled Techniques, and		
Topologies for Connectivity, Constructing Topologies for Coverage, Set Kcover Algorithms, Cross- Layer Issues, Metric-Based Approaches, Routing with Diversity, Multi-Path Routing, Lifetime-		
	Maximizing Energy-Aware Routing Techniques, Geographic Routing, Routing to Mobile Sinks,	
UNIT-05	Data-Centric Networking: Data-Centric Routing, Data-Gathering with Compression, Querying, Data-	06L
	Centric Storage and Retrieval, Database Perspective on Sensor Networks.	
Course Outcor	nes	
Upon successfu	Il completion of the course, the students will be able to	
CO1: Have	an understanding of the principles and characteristics of wireless sensor networks.	
CO2: Apply knowledge of wireless sensor networks to various application areas.		
CO3: Analy	se WSN protocols in terms of their energy efficiency and design new energy efficient protocols.	
Books and Ref	ferences	

1. Networking Wireless Sensors by Bhaskar Krishnamachari, Cambridge University Press.

2. Wireless Sensor Networks-An Information Processing Approach by Feng Zhao and Leonidas Guibas, Morgan Kauffman.

3. Wireless Sensor Networks-Technology, Protocols and Applications by K. Sohraby, D. Minoli and T. Znati, John Wiley & Sons.

Course Name:Satellite CommunicationCourse Code:EC-442Course Type:Professional Elective-III

Contact Hours/Week: 3L

Course Objectives

• To impart knowledge about the Orbital Mechanism, satellites and satellite system, satellite link design, earth station and satellite navigation systems.

Unit Number	Course Content	Lectures
UNIT-01	Orbital Mechanism: Satellite orbit and orbital equations, Kepler's laws of planetary motion,	07L
	Locating satellite in the orbit, Locating satellite with respect to earth, Look angle calculation,	
	Coverage angle and slant range, Orbital perturbations, Satellite launching, Orbital effects in	
	communication subsystem performance.	
UNIT-02	Satellites: Satellite subsystems, Attitude and orbit control system, Telemetry tracking command	06L
	and monitoring, Power system, communication subsystem, Satellite antennas.	
UNIT-03	Satellite Link Design: Basic link analysis, Interference analysis, Terrestrial interference, Inter-	10L
	modulation interference, Inter-symbol interference and rain induced attenuation, Uplink power	
	control, system availability, System design for link without frequency reuse and system design	
	for link with frequency reuse.	
UNIT-04	Earth Station: Earth station antenna types, Antenna gain, Antenna gain to noise temperature	07L
	ratio, G/T measurement, Frequency division multiple access, FDM-FM-FDMA, Single channel	
	per carrier.	
UNIT-05	Satellite based Navigation System: Principle of measuring signal transit time, Basic principles	06L
	of satellite navigation, Signal travel time Determining position, The effect and correction of time	
	error, Functional segments of GPS, Improved GPS: DGPS, SBAS, A-GPS and HSGPS.	
Course Outcor	nes	

Upon successful completion of the course, the students will be able to

CO1: Understand the orbital and functional principles of satellite communication systems

CO2: Architect, interpret, and select appropriate technologies for implementation of specified satellite communication systems

CO3: Analyze and evaluate a satellite link and suggest enhancements to improve the link performance.

CO4: Select an appropriate modulation, multiplexing, coding and multiple access schemes for a given satellite communication link.

CO5: Understand the Satellite based Navigation and different Systems.

Books and References

- 1. Digital Satellite Communications by Tri. T. Ha, Tata McGraw Hill.
- 2. Satellite Communications by Timothy Pratt and Jeremy E., Willey.
- 3. Satellite Communications by Dennis Roddy, Tata McGraw Hill.
- 4. Global Navigation Satellite Systems by G. S. Rao, Tata McGraw Hill.
- 5. Electronic Navigation by Nagaraja, Tata McGraw Hill.
- 6. The Global Positioning System & Inertial Navigation by Jay Farrell, Tata McGraw Hill.

Course Name:	Mobile Communication
Course Code:	EC-443
Course Type:	Professional Elective-III
Contact Hours/We	eek: 3L

Course Credits: 03

Course Objectives

• To understand the basic cellular system concepts.

• To have an insight into the interference, frequency management and handoff management in cellular mobile system.

• To go in depth for understanding the popular GSM cellular mobile standard and wireless standards.

Unit Number	Course Content	Lectures	
UNIT-01	Introduction: Wireless Communication Systems, Applications of Wireless Communication Systems, Types of Wireless Communication Systems, Trends in Mobile Communication Systems.	05L	
UNIT-02	Cellular Mobile Systems: Basic Cellular Systems, Performance Criteria, Uniqueness of Mobile Radio Environment, Operation of Cellular Systems, Analog& Digital Cellular Systems.	07L	
UNIT-03	Elements of Cellular Radio System Design: Concept of Frequency Reuse Channels, Co- channel Interference Reduction Factor, Desired C/I From a Normal Case in an Omnidirectional Antenna System, Handoff Mechanism, Cell Splitting.	05L	
UNIT-04	Interference in Cellular Mobile System: Co-channel Interference, Design of an Omnidirectional Antenna System in the Worst Case, Design of a Directional Antenna System, Lowering the Antenna Height, Power Control, Reduction in C/I by Tilting Antenna, Umbrella Pattern Effect, Adjacent-Channel Interference, Near-end, Far-end Interference, Effect on Near-end Mobile Units.	05L	
UNIT-05	Frequency Management, Channel Assignment and Handoffs: Frequency Management, Frequency-Spectrum Utilization, Set-up Channels, Fixed Channel Assignment Schemes, Non- Fixed Channel Assignment Schemes, Concept of Handoff, Initiation of a Hard Handoff, Delaying a Handoff, Forced Handoffs, Queuing of Handoffs, Power Difference Handoffs, Mobile Assisted Handoff, Soft Handoffs, Cell-site Handoff, Intersystem Handoff, Dropout Calls.	05L	
UNIT-06	GSM System Overview: GSM System Architecture, GSM Radio Subsystem, GSM Channel Types, Frame Structure for GSM, Signal Processing in GSM, GPRS and EDGE.	05L	
UNIT-07	Wireless Networks: Overview of Wi-Fi, WiMAX and Bluetooth Technology: Basic Features and Physical Specifications.	04L	
Course Outcor	nes		
Upon successf	ul completion of the course, the students will be able to		
CO1: Discu	ss cellular radio concepts.		
CO2: 10 ha	ive knowledge of the mobile system specifications.		
CO3. Class	CO4: Outline cellular mobile communication standards		
CO5: Analy	ze various methodologies to improve the cellular capacity.		
Books and Ret	ferences		
1. Mobile Cellular Telecommunications: Analog and Digital Systems by W. C. Y. Lee; Tata McGraw Hill Publication.			
2. Wi-Fi, Bluetooth, Zigbee and WiMax by H. Labiod, H. Afifi and C. D. Santis, Springer.			
3. Wireless Co	3. Wireless Communications: Principles and Practice by T. S. Rappaport; Pearson Publication.		
4. Wireless Communications and Networks: 3G and Beyond by I. S. Misra; Tata McGraw Hill Publication.			

5. Wireless and Digital Communications by K. Feher; PHI Publication.

Course Name:Information Theory and CodingCourse Code:EC-444Course Type:Professional Elective- III

Contact Hours/Week: 3L

Course Credits: 03

Course Objectives

- To impart knowledge about measuring the amount of information, capacities calculation of different channels in communication systems
- To understand the theorems and inequalities used in information and coding theory field.
- To enable the students to design the source coding algorithms for improving transmission efficiency.
- To enable the students to design the block based error control coding algorithms for improving error performance of communication systems.

Unit Number	Course Content	Lectures
UNIT-01	Measures of Information and Channel Capacity: Entropy, Relative Entropy and Mutual Information,	05L
	Basic Inequalities: Jensen Inequality and its Physical Application), Log-Sum Inequality and its	
	Physical Application, Fano Inequality and its Physical Application, Data Processing Theorem and its	
	Physical Application, Consequences of the Inequalities in the Field of Information Theory.	
UNIT-02	Entropy Rate and Channel Capacity: Stationary Markov Sources: Entropy Rate and Data	04L
	Compression, Definition of Capacity and its Computation of Discrete Memory Less Channels (BNC,	
	BSC, BEC, Cascaded Channels, Noiseless Channels, Noisy Typewriter), The Channel Coding	
	Theorem and the Physical Significance of Capacity.	
UNIT-03	Data Compression: Unique Decodability and the Prefix Condition, Kraft's Inequality, Relationship of	07L
	Average Codeword Length to Source Entropy, Examples of Coding Techniques: Huffman, Shannon-	
	Fano–Elias, Lempel–Ziv and Universal.	
UNIT-04	Design of Linear Block Codes: Introduction of Linear Block Codes, Syndrome and Error Detection,	07L
	Minimum Distance of a Block Code, Error Detecting and Error Correcting Capability of a Block Code,	
	Design of Encoder and Syndrome Decoder for Linear Block Codes.	
UNIT-05	Design of Cyclic Codes: Description Cyclic Codes, Generator and Parity Check Matrices of Cyclic	07L
	Codes, Encoding of Cyclic Codes, Syndrome Computation and Error Detection, Decoding of Cyclic	
	Codes, Cyclic Hamming Codes.	
UNIT-06	Convolutional Codes: Encoding of Convolutional Codes, Structural Properties of Convolutional	06L
	Codes, Distance Properties of Convolutional Codes, Design of Encoder and Decoder for	
	Convolutional Codes.	
Course Outcor	mes	
Linon successf	ul completion of the source, the students will be able to	

Upon successful completion of the course, the students will be able to

CO1: Understand the various terminologies to estimate information content in the communication system.

CO2: Apply various inequalities and quantities to evaluate the information content and entropy rate of a discrete memory-less source.

CO3: Design lossless source codes for discrete memory-less source to improve the efficiency of information transmission.

CO4: Design block based error control codes for improving the error performance of information transmission systems.

Books and References

1. Elements of Information Theory by T. M. Cover and J. A. Thomas, John Wiley, 1991.

2. Error Control Coding by S. Lin and D. J. Costello, Pearson Education, 2010.

3. Information Theory and Reliable Communication by R. G. Gallager, John Wiley & Sons, 1969.

Course Name:	Internet of Things	
Course Code:	EC-445	
Course Type:	Professional Elective-III	
Contact Hours/	Veek: 3L	Course Credits: 03
Course Object	ives	
 To impart kr 	nowledge about the concepts of IOT.	
To learn diff	erent protocols used in IOT and to learn how to analyse the data in IOT.	
 Introduce th 	e tools and techniques that enable IOT solutions and security aspects.	
Unit Number	Course Content	Lectures
UNIT-01	Introduction: IoT Example, IoT Devices vs. Computers, Trends in the Adoption of IoT, Societal	07L
	Benefits of IoT, Risks, Privacy, and Security, Overview of IoT and High level architecture.	
UNIT-02	IoT Workflow: Open source IoT Platform and Cloud platform options, IoT Cloud building blocks,	06L
	Device configuration and addressing, MQTT Server, Engines, Handling database, Data	
	monitoring, visualization and IoT Analytics, Rest API interface, Application Service.	
UNIT-03	Networking and Internet: WAN Structure, Networking components, Internet structure, IoT	10L
	Communication Models and Protocols, Protocol stack, TCP/IP Application Layer, Request-	
	Response, Publish-Subscribe, Push-Pull, Exclusive Pair, Application Protocols: HTTP, CoAP,	
	MQTT, AMQP, Communication APIs: REST-based, Web Socket-based, Network Layer: IPv4,	
	IPv6, 6LoWPAN.	
UNIT-04	Interfaces and programming: Ethernet, Wifi, Bluetooth communication protocols and	06L
	implementation, Overview of Linux subsystem, process, memory management, multi-threading,	
	IPC, C/C++ vs Python programming and libraries.	
UNIT-05	Performance and Security in IoT: Benchmarking IoT applications and Platforms, MQTT vs	07L
	HTTP performance, Security considerations, Firmware updates, Cryptography basics,	
	Cryptography in IoT, Privacy considerations and design guidelines.	
Course Outcor	nes	
Upon successfu	al completion of the course, the students will be able to	
CO1: Apply	IOT concepts to different applications	
CO2: Design some IOT based prototypes.		
CO3: Analy	sis and evaluate the data received through sensors in IOT, application development.	
Books and Ref	erences	
Computer networking: a top-down approach by James Kurose (Fifth Ed.), Pearson, 2010.		
2. Internet of I	nings A Hands-on Approach (First Ed.) by vijay Madisetti and Arshdeep Bahga, VPT, 2014.	(First Fd.) Arress
3. Retrinking the internet of rhings: A Scalable Approach to Connecting Everything by Francis da Costa (First Ed.), Apress		

Publications, 2013.

Course Name: FPGA and SoC Design Course Code: EC-460 Course Type: Professional Elective-IV Contact Hours/Week: 3L

Course Credits: 03

Course Objectives

- To give the student an understanding of issues and tools related to FPGA design and implementation.
- To give the student an understanding of basics of System on Chip and Platform based design.
- To impart knowledge about the System-level and SoC design methodologies and tools.

Unit Number	Course Content	Lectures	
	Revision of hasic Digital Systems: Combinational Circuits Sequential Circuits Timing Power	071	
	Dissipation Current state of the field SoC IP Design SoPC Design methodology System	0/2	
	Modeling, Hardware Software Co. design, Device Technology and Application Demains		
	Disital System Design, Tan down Approach to Design, Case study, Data Dath, Control Dath	001	
UNIT-02	Digital System Design. Top uowil Apploach to Design, Case Study, Data Path, Control Path,	UOL	
	Controller behavior and Design, Case study Meany & Moore Machines, Timing of sequential		
	circuits, Pipelining, Resource sharing, FSM issues (Starting state, Power on Reset, State		
	diagram optimization, State Assignment, Asynchronous inputs, Output Races, fault Tolerance.	001	
UNIT-03	HDL for Synthesis: Introduction, Benavioral, Data flow, Structural Models, Simulation Cycles,	08L	
	Process, Concurrent Statements, Sequential Statements, Loops, Delay Models, Sequential		
	Circuits, FSM Coding, Library, Functions, Procedures, Test benches.		
UNIT-04	FPGA Design: Introduction, Logic Block Architecture, Routing Architecture, Programmable	08L	
	Interconnections, Design Flow, Xilinx Virtex-V (Architecture), Boundary Scan, Programming		
	FPGA's, Constraint Editor, Static Timing Analysis, One hot encoding, Applications, Tools,		
	Embedded System on Programmable Chip, Hardware-software co-simulation, Bus function		
	models, BFM Simulation, Debugging FPGA Design.		
UNIT-05	SoC Design: Writing Effective HDL, Analyzing the RTL Design, SoC like Design start,	05L	
	Applications with Zynq FPGA, Software Interface, Register Address Map, Hardware/Software		
	Co-Design and Verification, High performance algorithms for ASICS/ SoCs as case studies.		
Course Outcor	nes		
Upon successfu	ul completion of the course, the students will be able to		
CO1: Demo	CO1: Demonstrate VLSI tool-flow and appreciate FPGA architecture		
CO2: Unde	rstand the basics of system on chip and on chip communication architectures.		
CO3: Under	rstand the issues involved in ASIC design, including technology choice, design management, tool-fl	OW.	
Books and Ref	ierences		
1. Verilog, An	alysis and Modeling of Digital Systems by Zainalabedin Navabi, McGraw-Hill.		
2. System C:	2. System C: From the Ground Up by D. Black and J. Donovan, Springer, 2004.		
3. Digital Des	ign: Principles and Practices by Jon F Wakerly, Prentice Hall.		

4. Synthesis and Optimization of Digital Circuits by G. De Micheli, McGraw-Hill, 1994.

Course Name: Low Power VLSI Design Techniques Course Code: EC-461

Course Type: **Professional Elective-IV**

Contact Hours/Week: 3L

Course Credits: 03

Course Objectives

- To impart knowledge about the dominant sources of power dissipation in VLSI circuits.
- To introduce the fundamental concepts for optimization of power at all design levels: technology, circuit, logic, and architectural • level.
- To enable the students to aware of power estimation by various means. •

Unit Number	Course Content	Lectures
UNIT-01	Introduction: Need for Low Power VLSI Chips, Sources of Power Dissipation in Digital	05L
	Integrated Circuits, Physics of Power Dissipation in CMOS Devices, Dynamic Dissipation in	
	CMOS, Leakage Power Dissipation, Low Power Figure of Merits, Impact of Technology Scaling,	
	Device Innovation and Channel Engineering	
UNIT-02	Low Power Circuit Level Design: Circuit Level Transistor and Gate Sizing, Circuit Techniques	07L
	for Leakage Power Reduction, Transistor Stacking, Supply Voltage Scaling Techniques,	
	DICMOS, MICMOS, Network Restructure and Reorganization, Flip Flops and Latches Design,	
	and Low Power Digital Cell Library	071
UNIT-03	Low Power Logic Level Design: Gate Reorganization, Multi Stage Logic Design, Signal	0/L
	Gating, Logic Encoding, State Machine Encoding, and Pre-Computation Logic	071
0111-04	Low Power Architecture and System Level Design. Power and Periormance Management,	0/L
	Transformation	
	Power Estimation: Simulation Dower Analysis: SDICE Circuit Simulators, Cate Level Legie	051
0111-05	Simulation Canacitive Power Estimation Static State Power Cate Level Canacitance	UJL
	Estimation Data Correlation Analysis in DSP Systems Monte Carlo Simulation Probabilistic	
	Power Analysis: Random Logic Signals, Probability and Frequency, and Probabilistic Power	
	Analysis Techniques	
UNIT-06	Special Techniques: Low Power Clock Distribution, Single Driver vs Distributed Buffers.	05L
	Various Clock Distribution Networks, Power Reduction in Clock Networks, Low Power Bus,	
	CMOS Floating Nodes, and Adiabatic Logic.	
Course Outcor	mes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Identi	fy sources of power dissipation in VLSI systems.	
CO2: Analyze various circuit and logic design techniques for dynamic and leakage power reduction.		
CO3: Design arithmetic circuits, latches and flip flops with different logic styles.		
CO4: Unde	CO4: Understand the concepts of probability and random logic signals for estimation of capacitance and power dissipation.	
CO5: Unde	rstand power management through architectural level techniques.	
Books and Ref	ferences	

- 1. Practical Low Power Digital VLSI Design by Gary K. Yeap, Kluwer Academic Press.
- 2. Low-Power CMOS VLSI Circuit Design by Kaushik Roy, and Sharat Prasad, Wiley.
- 3. Low Power VLSI CMOS Circuit Design by A. Bellamour, and M. I. Elmasri, Kluwer Academic Press.
- 4. Low Power Design Methodologies by J. M. Rabaey and M. Pedram, Kluwer Academic Press.
- 5. Low-Voltage Low-Power VLSI subsystems by Kait-Seng Yeo and Kaushik Roy, Tata McGraw-Hill.
- 6. Low Power Digital CMOS Design by Anantha P. Chandrakasan and Robert W. Brodersen, Kluwer Academic Press.

Course Name:	VLSI Testing
Course Code:	EC-462
Course Type:	Professional Elective-IV

Contact Hours/Week: 3L

Course Objectives

- To impart knowledge about the basics of testing techniques for VLSI circuits and Test Economics
- To introduce the fundamental concepts of Design for Testability.
- To enable the students to generate the test patterns.

Unit Number	Course Content	Lectures
UNIT-01	Basics of Testing And Fault Modeling: Introduction to Testing, Test process and ATE, Faults in digital circuits, Modeling of faults, Logical Fault Models, Fault detection,	02L
	Fault location, Fault dominance, Logic Simulation, Types of simulation, Delay models, Gate level Event-driven simulation.	
UNIT-02	Test Generation For Combinational and Sequential Circuits: Logic simulation and fault simulation, Testability measures, Test generation for combinational logic circuits, Testable combinational logic circuit design, Test generation for sequential circuits, Design of testable sequential circuits.	8L
UNIT-03	Design For Testability: Ad-hoc design, Generic scan based design, Classical scan based design – System level DFT approaches, Memory test.	9L
UNIT-04	Self-Test and Test Algorithms Built-In Self-Test: Test pattern generation for BIST, Circular BIST, BIST Architectures, Testable Memory Design, Test algorithms, Test generation for Embedded RAMs, Logic BIST and EDT, Boundary Scan, System test and core test.	12L
UNIT-05	Fault Diagnosis Logic Level Diagnosis: Diagnosis by UUT reduction, Fault Diagnosis for Combinational Circuits, Self-checking design, System Level Diagnosis.	05L
Course Outco	omes	
Upon success	sful completion of the course, the students will be able to	

CO1: Apply the concepts in testing which can help them design a better yield in IC design.

CO2: Tackle the problems associated with testing of semiconductor circuits at earlier design levels so as to significantly reduce the testing costs.

CO3: Identify the design for testability methods for combinational & sequential CMOS circuits

Books and References

1. Digital Systems and Testable Design by M. Abramovici, M. A. Breuer and A. D. Friedman, Jaico Publishing House.

2. Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits by M. L. Bushnell and V. D. Agrawal, Kluwer Academic Publishers.

3. Digital Circuit Testing and Testability by P. K. Lala, Academic Press.

4. Design Test for Digital IC's and Embedded Core Systems by A. L. Crouch, Prentice Hall International.

Course Name:	VLSI Interconnects and Packaging	
Course Code:	EC-463	
Course Type:	Professional Elective – IV	
Contact Hours/Week:3L		

Course Credits: 03

Course Objectives

- To impart knowledge about the importance of electrical on-chip interconnects in modern VLSI circuits
- To introduce the various equivalent circuit models of interconnects and their comparison
- To understand the short-channel model of CMOS repeater driving interconnect and its analysis
- To enable the students to understand the advanced interconnect techniques

Unit Number	Course Content	Lectures
UNIT-01	Interconnects: Interconnect Parameters: Resistance, Inductance, and Capacitance,	07L
	Interconnect RC Delays: Elmore Delay Calculation. Interconnect Models: Lumped RC Model,	
	Distributed RC Model, Transmission Line Model. SPICE Wire Models: Distributed RC Lines in	
	SPICE, Transmission Line Models in SPICE, Gate and Interconnect Delay	
UNIT-02	CMOS Repeater: Static Behavior: Switching Threshold, Noise Margins. The Dynamic Behavior-	06L
	Computing the Capacitances. <i>Propagation Delay</i> : First order analysis, Propagation Delay from a	
	Design Perspective. Power, Energy and Energy-Delay: Dynamic Power Consumption, Static	
	Consumption, Analyzing Power Consumption using SPICE	
UNIT-03	Driving Interconnects for Optimum Speed and Power: Short Channel Model of CMOS	05L
	Repeater: Transient Analysis of an RC Loaded CMOS Repeater, Delay Analysis. Analytical	
	Power Expressions: Dynamic Power, Short Circuit Power, Resistive Power Dissipation. CMOS	
	Repeater Insertion: Analytical Expressions for Delay and Power of a Repeater Chain Driving an	
	RC Load	
UNIT-04	Advanced Interconnect Techniques: Reduced-swing Circuits, Current Mode Transmission	05L
	Techniques	
UNIT-05	Crosstalk: Theoretical Basis and Circuit Level Modeling of Crosstalk, Energy Dissipation due to	07L
	Crosstalk: Model for Energy Calculation of two Coupled Lines. Contribution of Driver and	
	Interconnect to Dissipated Energy. Crosstalk effects in logic VLSI circuits: Static Circuits,	
	Dynamic Circuits and Various Remedies	
UNIT-06	IC Packaging: Package Types, Packaging Design Considerations, VLSI Assembly Technology,	06L
	Package Fabrication Technology	
Course Outcor	mes	
Upon successfu	I completion of the course, the students will be able to	
CO1: Deve	lop the ability to analyze and design electrical interconnect using equivalent circuit models	
CO2: Unde	rstand the use of CMOS repeater to predict delay and power in interconnects	
CO3: Desci	ribe the design trade-offs in driver-interconnect-load system	
CO4: Desig	n crosstalk and delay aware repeater driven interconnect system using advanced signaling techniqu	Jes
Books and Ret	ferences	
1. Analysis an	d Design of Digital Integrated Circuits – A Design Perspective by Jan M. Rabaey, Tata Mc-Graw Hill	l.
2. Interconnec	tion Noise in VLSI Circuits by F. Moll and M. Roca, Kluwer Academic Publishers.	
3. Introduction	to VLSI Circuits and Systems by J. P. Uymera, Wiley Student Edition.	

4. CMOS Digital Integrated Circuits – Analysis and Design by S. M. Kang and L. Yusuf, Tata Mc-Graw Hill.

Course Name:Nano Electronics: Devices and MaterialsCourse Code:EC-464Course Type:Professional Elective –IV

Contact Hours/Week: 3L

Course Credits: 03

Course Objectives

- To make the student able to know physics of the short channel effects in Nano MOS devices and possible solutions..
- To know the scaling of transistors and other devices to smaller and smaller sizes.
- To understand the various devices in nano regime.

Unit Number	Course Content	Lectures
UNIT-01	Introduction to Nanoelectronics: Physical and Technological Limitations of Microelectronics,	02L
	Transitioning from Microelectronics to Nanoelectronics	
UNIT-02	Small scale MOSFET Fundamental: Review of MOSFET working and C-V I-V analysis, MOS	10L
	Scaling theory, Issues in scaling MOS transistors, scaling effects (short channel, narrow channel	
	effects, drain induced barrier lowering), Nonideal effects (poly depletion, surface charges). High	
	field effects (tunneling, breakdown). Channel velocity limitations (saturation velocity, interface	
	scattering, mobility models). Hot carrier effects (impact ionization, gate/substrate currents,	
	threshold voltage degradation, velocity overshoot, ballistic effects). On/Off currents. Channel	
	doping profiles (Implanted channel, buried channel, retrograde wells, S/D extension, HALO/LATID	
	structures. Work function pinning. Radiation effects, Technology node, Metal gate transistor -	
	Motivation, requirements, Integration Issues.	
UNIT-03	Advanced MOSFET Structures	07L
	Raised source/drain MOSFET, SiGe & strained Si MOSFET, Metal source/drain junctions MOS,	
	SOI-PDSOI and FDSOI; Ultrathin body SOI-double gate transistors, integration issues; Vertical	
	transistors – FinFET and Surround gate FET, Carbon	
UNIT-04	Non classical MOS transistor: Nanotube Transistors (CNT), Tunnel FET and Semiconductor	07L
	Nanowire FETs, Germanium Nano MOSFETs, Hetero structure MOSFETs.	
UNIT-05	Emerging Nano Material: Semiconductor heterostructures, Inorganic nanowires, Organic	05L
	semiconductors, Carbon nanomaterials-nanotubes and fullerenes, Graphene.	
UNIT-06	Characterization Techniques for Nanomaterials: FTIR, XRD, AFM, SEM, TEM, EDAX etc.	05L
	Applications and interpretation of results.	
Course Outcor	nes	
Upon successf	ul completion of the course, the students will be able to	

CO1: Understanding the insight of Nanoelectronics device Physics so as to provide appropriate and economical viable solution to electronics engineering community and society at large.

CO2: Identifying different techniques to improve the state of art electronic device so as to solve the real world research problems.

CO3: Identifying different devices so as to meet out the present design, health, safety and environmental challenges Books and References

1. Fundamentals of Modern VLSI Devices, Y. Taur and T Ning, Cambridge University Press.

2. Nanoscale Transistors-Device Physics, Modeling and Simulation by Mark Lundstrom and Guo Jing, Springer

3. Modern Semiconductor Device Physics by S.M. Sze, Wiley.

4. Encyclopedia of Materials Characterization, Edited by Richard C. Brundle, Charles A. Evans (Jr.), Shaun Wilson, Elsevier.

5. Advanced MOS Devices by Dieter K. Schroder, Addison-Wesley Pub. Co.

Course Name:Electromagnetic Interference and CompatibilityCourse Code:EC-465

Course Type: Professional Elective-IV

Contact Hours/Week: 3L

Course Objectives

- To impart knowledge about the Electromagnetic radiation, antenna basic parameters, antenna arrays and their patterns, special antennas, wave propagation over ground, through troposphere and ionosphere.
- To familiarize with the fundamentals that are essential for electronics industry in the field of EMI / EMC
- To understand EMI sources and its measurements.
- To understand the various techniques for electromagnetic compatibility.

Hu 't Norschau		
Unit Number	Course Content	Lectures
UNIT-01	Basic Concepts: Introduction and Definition of EMI and EMC with examples, Various	07L
	parameters, Sources of EMI, EMI coupling modes - CM and DM, ESD Phenomena and effects,	
	Transient phenomena and suppression, Various issues of EMC, EMC Testing categories.	
UNIT-02	Coupling Mechanism: Electromagnetic field sources and Coupling paths, Coupling via the	09L
	supply network, Common mode coupling, Differential mode coupling, Impedance coupling,	
	Inductive and Capacitive coupling, Radiative coupling, Ground loop coupling, Cable related	
	emissions and coupling.	
UNIT-03	EMI Mitigation Techniques: Working principle of Shielding and Murphy's Law, LF Magnetic	10L
	shielding, Apertures and shielding effectiveness, Choice of Materials for H, E, and free space	
	fields, Gasketting and sealing, PCB Level shielding, Principle of Grounding, Isolated grounds,	
	Grounding strategies for Large systems.	
UNIT-04	Standard and Regulations: Need for Standards, Standards for EMI/EMC, National and	05L
	International EMI Standardizing Organizations: IEC, ANSI, FCC, AS/NZS, CISPR, BSI,	
	CENELEC and ACEC, Electro Magnetic Emission and susceptibility standards and	
	specifications.	
UNIT-05	Measurement Methods and Instrumentation: EMI Shielding effectiveness tests, Open field test,	05L
	TEM cell for immunity test, Shielded chamber, Shielded anechoic chamber, EMI measuring	
	instruments.	
Course Outco	mes	
Upon successf	ul completion of the course, the students will be able to	
CO1: Real-	world EMC design constraints and make appropriate tradeoffs to achieve the most cost-effective c	lesign that meets all
requir	rements.	
CO2: Desig	ning electronic systems that function without errors or problems related to electromagnetic compati	bility
CO3: Diagr	nose and solve basic electromagnetic compatibility problems.	
Books and Re	ferences	
1. Introduction	n to Electromagnetic Compatibility by Clayton R. Paul, Wiley & Sons.	
2. Principles o	f Electromagnetic Compatibility by B. Keiser, Artech House.	

3. Engineering EMC Principles, Measurements and Technologies by V. P. Kodali, New York.

Course Name:	MEMS Design			
Course Code:	EC-370			
Course Type:	Open Elective – I			
Contact Hours/	Week: 3L	Course Credits: 03		
Course Object	ives			
To impart k	nowledge about the need and applications of microsystem in engineering.			
To introduce	e the fundamental concepts relevant to fabrication and machining process of MEMS sensors and a	ctuators.		
To enable t	he students to understand the various sensing and actuation mechanisms.			
Unit Number	Course Content	Lectures		
UNIT-01	Introduction:Introduction to MEMS and Microsystems, MEMS Materials, Structural and Sacrificial Materials, Properties of Silicon, Polymers, Ceramics, and Composites, Basic Modeling of Elements in Electrical and Mechanical Systems, Sensors/Transducers, Sensors Characterization and Classifications, Microactuators, Application of MEMS	04L		
UNIT-02	MEMS Fabrication: Silicon Growth, Additive Techniques: Oxidation, Physical Vapor Deposition, Chemical Vapor Deposition, Thin Film Deposition, Photolithography, Etching, Bulk and Surface Micromachining, Etch Stop Technique and Microstructure, Microstereolithography LIGA, and Wafer Bonding	10L		
UNIT-03	Mechanical Sensors and Actuators: Beam and Cantilever, Capacitive Sensors, Modeling a Capacitive Sensor, Capacitive Accelerometer, Pressure Sensors, Piezoresistance Effect and Its Modeling, Piezoresistive Sensor, Flow Measurement, Piezoelectricity, Piezoactuators, Inertial Sensors, Micro accelerometer, MEMS Gyroscope, and Parallel-Plate Actuator.	08L		
UNIT-04	Thermal Sensors: Need and Classification, Temperature Coefficient of Resistance, Thermo- Electricity, Thermocouples, Thermal and Temperature Sensors, Heat Pump, Gas sensors, Micromachined Thermocouple Probe, Thermo-resistive Sensor, Thermal Flow Sensors, Pyroelectricity, Shape Memory Alloy, and Thermal Actuators	08L		
UNIT-05	Micro-opto-electromechanical Systems: Properties of Light, Light Modulators, Beam Splitter, Microlens, Micromirrors, Digital Micromirror Devices, Light Detectors, Grating Light Valve, and Optical Switch	06L		
Course Outcor	nes			
Upon successf	ul completion of the course, the students will be able to			
CO1: Identify	structural and sacrificial materials for MEMS.			
CO2: Describe	ethe fabrication steps in designing of various MEMS parts.			
CO3: Apply principles for the design of Sensor and actuators.				
CO4: Apply MEMS for different applications in various fields of engineering.				
Books and References				
1. Introductory MEMS Fabrication and Applications by T. M. Adams and R. A. Layton, Springer Publications.				
2. Sensors and Transducers by M. J. Usher, McMillian Hampshire.				
3. MEMS by N. P. Mahalik, Lata McGraw Hill.				
4. microsensors by K.S. muller, Howe, Senturia and Smith, IEEE Press.				
 Analysis and Design Principles of MEMS Devices by Minnang Bao, Elsevier. Semiconductor Sensors by S. M. Sze, Willy, International Bublications. 				
o. Semicondu	CIOF SERISOTS BY S. M. SZE, WIIIY –INTERSCIENCE PUBLICATIONS.	6. Semiconductor Sensors by S. M. Sze, Willy –Interscience Publications.		

Course Name:	Microcontroller and its Applications		
Course Code:	EC- 380		
Course Type:	Open Elective - II		
Contact Hours/	Week: 3L	Course Credits: 03	
Course Object	ives		
To impart ki	nowledge about the architecture and instruction set of typical 8-bit microprocessor.		
To introduce	e the fundamental concepts relevant to, Assembly Language, Timers, Interrupts.		
• To learn to	make use of computer for real world applications		
Unit Number	Course Content	Contact Hours	
UNIT-01	Introduction to Microprocessors: History and Evolution, types of microprocessors,	06L	
	Microcomputer Programming Languages, Microcomputer Architecture, Pipelining, Clocking, Intel		
	8085 Microprocessor, Register Architecture, Bus Organization, ALU, Control section, ISA of		
	8085, Instruction format, Addressing modes, Types of Instructions.		
UNIT-02	Assembly Language Programming and Timing Diagram: Assembly language programming	08L	
	in 8051, Macros, Labels and Directives, Microprocessor timings, Micro instructions, Instruction		
	cycle, Machine cycles, T-states, State transition diagrams, Timing diagram for different machine		
	cycles, Memory and I/O interface.		
UNIT-03	Basic Function Blocks: Instruction Set, Instruction Usage Examples, implementation of various	09L	
	structures like loop, switch, functions, subroutines.		
UNIT-04	Interrupts and Serial Data Transfer: Interrupts in 8051, Serial interrupts, RST instructions,	07L	
	Issues in implementing interrupts, Multiple interrupts and priorities, Daisy chaining, Interrupt		
	handling in 8051, Enabling, Disabling & masking of interrupts.		
UNIT-05	Applications: Low power sensor networks, LEDs 7 segment, LCD, and ADCs, Defining Buses	06L	
	and Protocols, Embedded Computing		
Course Outcor	nes		
Upon successf	ul completion of the course, the students will be able to		
CO1: Understa	nd the architecture of 8051		
CO2: Impart the knowledge about the instruction set and program components			
CO3: Understand the basic idea about the practical applications			
Books and References			
1. The 8	051 Microcontroller and Embedded Systems by Mazidi Muhammad Ali, Pearson Publications, Seco	ond Ed.	
2. The D	2. The Definitive Guide to ARM Cortex-M3 processors by Joseph Yiu, Newnes Publication Third Ed.		
3. Comp	3. Computer Systems: An Embedded Approach by Ian Vince McLoughlin, McGraw-Hill Education.		
4. 8051	4. 8051 Microcontroller by Scott MacKenzie, Parson Publications, 4th Ed.		