SCHEME & SYLLABUS

of

B.TECH.

ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGG.
NATIONAL INSTITUTE OF TECHNOLOGY, HAMIRPUR-177 005 (HP)

New Scheme
2014
Scheme & Syllabus of B.Tech. Electronics & Communication Engineering

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)

http://www.nith.ac.in/ece/

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Semester</td>
</tr>
<tr>
<td>S. No.</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>H=30</td>
</tr>
</tbody>
</table>

Credit=37 Contact Hours=59
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>S. No.</th>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECS-211</td>
<td>Engineering Mathematics-III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>ECD-221</td>
<td>Linear Integrated Circuits</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECD-212</td>
<td>Analog Electronics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>ECD-222</td>
<td>Electronic Switching Circuits</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ECD-213</td>
<td>Digital Electronics and Logic Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>ECD-223</td>
<td>Analog Communication Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ECD-214</td>
<td>Network Analysis and Synthesis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>ECD-224</td>
<td>VLSI & MEMS technology</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ECD-215</td>
<td>Communication Theory</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>ECD-225</td>
<td>Electronic Measurement & Instrumentation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ECD-216</td>
<td>Data Structure and Algorithm</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>ECD-226</td>
<td>Reliability and Quality Management</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ECD-217</td>
<td>Analog Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>ECD-227</td>
<td>Linear Integrated Circuits Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>ECD-218</td>
<td>Digital Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>ECD-228</td>
<td>Analog Communication Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>ECD-219</td>
<td>Circuit Design & Simulation lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>ECD-229</td>
<td>Electronic Measurement and Instrumentation Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>ECD-210</td>
<td>Data Structure and Algorithm Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H=36 22

Credit=43 CH=69

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/
Scheme & Syllabus of B.Tech. Electronics & Communication Engineering

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)

http://www.nith.ac.in/ece/

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>S. No.</th>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECD-311</td>
<td>Microprocessor Theory and Applications</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>ECD-321</td>
<td>Microcontroller & Embedded Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECD-312</td>
<td>Digital Communication and Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>ECD-322</td>
<td>Wireless Communication</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ECD-313</td>
<td>Antenna & Wave propagation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>ECD-323</td>
<td>Digital Signal Processing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ECD-314</td>
<td>Electronics Device Modeling</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>ECD-324</td>
<td>Analog & Digital VLSI Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ECD-315</td>
<td>Control System</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>ECO-325</td>
<td>Open Elective-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ECO-316</td>
<td>Open Elective-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>ECD-326</td>
<td>HDL Based Design</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>ECD-317</td>
<td>Digital Communication Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>ECD-327</td>
<td>VLSI & MEMS Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>ECD-318</td>
<td>Electronics Device Modeling Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>ECD-328</td>
<td>Microcontroller & Embedded Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ECD-319</td>
<td>Microprocessor Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>ECD-329</td>
<td>Digital Signal Processing Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>ECD-320</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

H=33 21

Credit=46 CH=69
Scheme & Syllabus of B.Tech. Electronics & Communication Engineering

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)

FOURTH YEAR

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>S. No.</th>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECH-411</td>
<td>Engineering Economics & Management</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>ECD-421</td>
<td>Microwave Devices & Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECD-412</td>
<td>Optical Communication Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>ECD-422</td>
<td>Spread Spectrum & CDMA</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ECD-413</td>
<td>Industrial Electronics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>ECD-423</td>
<td>Data Communication & Computer Networks</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ECE-414</td>
<td>Elective-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>ECD-424</td>
<td>Elective-III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ECE-415</td>
<td>Elective-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>ECD-425</td>
<td>Elective-IV</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ECD-416</td>
<td>Project-I</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>ECD-426</td>
<td>Microwave Devices & Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>ECD-417</td>
<td>Optical Communication Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>ECD-427</td>
<td>Communication & Network Simulation Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>ECD-418</td>
<td>Industrial Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>ECD-428</td>
<td>Project-II</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>ECD-419</td>
<td>Industrial Training Viva</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>ECD-429</td>
<td>General Proficiency</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>ECD-410</td>
<td>Term Paper</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credit=52
CH=73

Total Credit = 18+19+22+21+25+26+28=180
Total Hours = 29+30+36+33+33+36+35+38 = 270

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)

http://www.nith.ac.in/ece/
Elective-I:
- **ECE-414 (a)** Satellite Communication
- **ECE-414 (b)** T.V. and Display Technology
- **ECE-414 (c)** Biomedical Electronics
- **ECE-414 (d)** Signal and Systems
- **ECE-414 (e)** Mobile Communication
- **ECE-414 (f)** Telecommunication Management

Elective-II:
- **ECE-415 (a)** MEMS & Sensor Design
- **ECE-415 (b)** FPGA & SoC Design
- **ECE-415 (c)** RF IC Design
- **ECE-415 (d)** Advanced IC Design
- **ECE-415 (e)** HDL Based Design

Elective -III:
- **ECE-424 (a)** Optical Networks
- **ECE-424 (b)** Wireless Sensor Networks
- **ECE-424 (c)** Signal processing for Image and Video
- **ECE-424 (d)** Error Control & Coding
- **ECE-424 (e)** Radar & Navigational Aids

Elective -IV:
- **ECE-425 (a)** Low Power VLSI Design Techniques
- **ECE-425 (b)** VLSI Interconnects & Packaging
- **ECE-425 (c)** NanoElectronics
- **ECE-425 (d)** CAD of Integrated Circuits

Open Electives:
1. Data structure
2. Optimisation Techniques
3. Operation Research
4. Professional Ethics and Human Values
5. Numerical Analysis
6. MEMS and Sensor Design
7. Telecommunication Systems
1. MATRICES:
Matrices, Related matrices, Complex matrices (Hermitian and skew-Hermitian matrices, Unitary matrix), Solution of linear system of equations, Rank of a matrix, Gauss-Jordan method, Normal form of a matrix, Vectors, Linear dependence, Consistency of a linear system of equations, Rouche’s theorem, System of linear homogeneous equations, Linear and orthogonal transformations, Characteristic equation, Eigen values, Eigen vectors, Properties of eigen values, Cayley-Hamilton theorem, Reduction to diagonal form, Quadratic form and their reduction to canonical form.

2. INFINITE SERIES:
Convergence and divergence of infinite series, Geometric series test, Positive term series, p-series test, [Comparison test, D’Alembert’s ratio test, Cauchy’s root test (Radical test), Integral test, Raabe’s test, Logarithmic test, Gauss’s test] (without proofs), Alternating series and Leibnitz’s rule, Power series, Radius and interval of convergence.

3. DIFFERENTIAL CALCULUS:
Indeterminate forms, Partial Differentiation and its geometrical interpretation, Homogeneous functions, Euler’s theorem and its extension, Total differentials, Composite function, Jacobian, Taylor’s and Maclaurin’s infinite series, Errors and increments, Introduction to limits and Indeterminate forms, Maxima and minima of functions of two variables, Method of undetermined multipliers. Curve tracing.

4. INTEGRAL CALCULUS:
Quadrature, Rectification, Surface and Volume of revolution for simple curves, Double integrals and their applications, Change of order of integration, Change of variables, Triple integrals and their applications, Change of variables.

5. VECTOR CALCULUS:
Differentiation of vectors, Curves in space, Velocity and acceleration, Relative velocity and acceleration, Scalar and vector point functions, Vector operator del, gradient, divergence and curl with their physical interpretations, Formulae involving gradient, divergence and curl. Line, surface and volume integrals, Theorems of Green, Stokes and Gauss (without proofs) and their verifications and applications, Irrotational and Solenoidal fields.

TEXT BOOKS:

REFERENCE BOOKS:
1. SEMICONDUCTOR DEVICE PHYSICS:
 Energy bands in solids, the E-k diagram, Density of states, Occupation probability, Fermi level and quasi Fermi levels, Fermi-Dirac Statistic, Effective mass, Conductivity as a function of temperature p-n junctions, Schottky junction and Ohmic contacts, Semiconductor optoelectronic materials, Bandgap modification, Heterostructures and Quantum Wells.

2. MAGNETIC AND DIELECTRIC PROPERTIES OF MATERIALS:
 Origin of magnetism, dia, Para, Ferro, antiferro and ferrimagnetisms, soft and hard magnetic materials, dielectric properties, Piezo, pyro and Ferro electricity.

3. STRUCTURE OF MATERIALS:
 Space lattice and unit cells, crystal system, Symmetry operation, Structures of common metallic, Semiconductor ceramic and, Miller Indices, Packing fractions, Structure determination using X-ray diffraction, Braggs law, and lattice parameter determination. Bonding in solids, coordination number, ceramics, silicates and clay structures, glass transition temperature, non-crystalline materials.

4. INTERACTION OF PHOTONS WITH MATERIALS:
 Rates of emission and absorption, spontaneous and stimulated emission, Condition for amplification by stimulated emission, the laser amplifier, characteristics of laser light, three and four level laser system, coherence,Ruby, He-Ne, CO2 and semiconductor lasers. Optical Fiber, physical structure and basic theory, modes in optical fibers, step index and graded index fibers, losses in optical fibers, applications of optical fibers.

5. SUPERCONDUCTIVITY:
 Introduction and discovery of superconductivity, superconducting materials, Meissner effect, critical magnetic field and critical current, type I and type-II superconductors, Isotope effect, BCS theory of superconductivity, flux quantization, SQUIDS, applications of superconductivity.

TEXT / REFERENCES BOOKS:
2. Introduction to Solid State Physics, C. Kittel.
 Ltd.
5. Modern Engineering Physics; A.s. Vasudeva, S. Chand & Co. Ltd.

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/
1. ENVIRONMENTAL MANAGEMENT, RESOURCES AND LEGISLATION:
 Environmental disturbances, quantification of environmental issues, soil resources and their classification, equitable use of resources, natural resource management, food chain and trophic levels, environmental impacts of energy development, legislation.

2. GLOBAL ATMOSPHERIC CHANGE:
 The atmosphere of earth, global temperature, greenhouse effect, radiative forcing of climate change, global warming potential, carbon cycle, carbon emissions from fossil fuels, regional impacts of temperature change, global initiatives.

3. PHYSICAL, CHEMICAL AND BIOLOGICAL PROCESSES:
 Particle dispersion, methods of expressing particle concentrations, stoichiometry, chemical equilibria, solubility of gases in water, carbonate system, organic chemistry, nuclear chemistry, nuclear fission and fusion, basic atmospheric properties, fundamentals of microbiology.

4. POPULATION AND ECONOMIC GROWTH:
 The nature of human population growth, population parameters, industrialisation, urbanisation, sustainable development, sustainable consumption, resettlement and rehabilitation issues, health and the environmental impacts.

5. SOLID AND HAZARDOUS WASTE MANAGEMENT:

6. POLLUTION AND MONITORING:
 Water resources, characteristics of water, water pollutants, oxygen demanding wastes, surface water quality, groundwater quality, water and wastewater treatment systems.
 Air quality standards, emission standards, criteria pollutants, air pollution and meteorology, atmospheric dispersion, emission controls.
 Effect of noise on people, rating systems, community noise sources and criteria, traffic noise prediction, noise control.

TEXTS/REFERENCES:
1. **SEMI-CONDUCTORS AND DIODES:**
 Introduction, Insulators, semiconductors and metals, Mobility and conductivity, Intrinsic and extrinsic semiconductors, Charge density, current components in semiconductors, Continuity equation, PN junction diode- Characteristics and analysis, Types of diodes- Zener, Photodiodes, LED, Varactor diode, tunnel diodes.

2. **DIODE APPLICATIONS:**
 Rectifiers and filter circuit: Half wave rectifier, Full wave rectifier, bridge rectifier and their analysis, L,C and Pi filters, Series and shunt diode clippers, Clipping at two independent levels, Clamping operation, Clamping circuit, Practical clamping circuits, Basic regulator supply using zener diode.

3. **TRANSISTORS:**
 Construction and characteristics of BJT, Transistor configuration: CB, CE, CC configuration, Transistor at low frequency, Small signal low frequency transistor model(h-parameters), Analysis of transistor amplifier using h-parameters, Transistor biasing and bias stabilization: Operating point, Stability factor, Analysis of fixed bias, collector to base bias, Emitter resistance bias circuit and self bias circuit, Bias compensation techniques.

4. **FIELD EFFECT TRANSISTOR:**
 Construction and characteristics of JFET, JFET biasing circuit, JFET amplifier, MOSFET construction and characteristics.

5. **AMPLIFIERS AND OSCILLATORS:**
 Classification of amplifiers, concept of feedback, Characteristics of feedback amplifiers, Single stage RC coupled amplifier, Oscillators, Criterion for oscillation, Types of oscillators: Hartley oscillator, Colpitt oscillator, RC-phase shift oscillator, Wein bridge oscillator.

6. **OPERATIONAL AMPLIFIERS:**
 Introduction, inverting and non-inverting configuration, Applications of op-amp: Adder, subtractor, Integrator, Differentiator, Comparator and practical op-amps.

TEXT BOOKS:
1. Integrated devices & Circuits by Millman & Halkias.
2. Electronics Devices and Circuit Theory by R. Boylestad.

REFERENCE BOOKS:
2. Electronics Devices and Circuit by G.K. Mithal.
ECD-115 | ENGINEERING GRAPHICS | L | T | P | C
| | | 1 | 0 | 3 | 3 |

1. **INTRODUCTION (MINIMUM 1 SHEET):**

2. **ORTHOGRAPHIC PROJECTIONS (MINIMUM 4 SHEETS):**
 Simple orthographic projections, first and third angle, Projection of points and lines in different quadrant, Traces, Inclinations, True lengths of line, Projection on auxiliary plane, Shortest distance, Intersecting and Non Intersecting lines. Planes other than reference planes– perpendicular and oblique planes, traces, inclinations etc., projection of lines lying in the plane, conversion of oblique plane into auxiliary plane and related demonstrative problems. Different cases of plane figures of different shapes and making different angles with one or both reference planes and lines lying in the plane figure making different given angles, Obtaining true shape of the plane figure by projection. Projection of solids, simple cases of solids placed in different positions, axes faces and lines lying in the faces of solids making given angles, Development of surfaces – development of simple objects like Tetrahedron, Cube, Octahedron, Square based pyramid and Pentagonal based prism, Introduction to Isometric Projections.

3. **SECTIONS OF SOLIDS (MINIMUM 2 SHEETS):**
 Importance, Principles, Types, Cutting plane representation, section lines and conventional practices, Demonstrative examples showing sections of Cube, Cylinder, Cone, Pyramid and Prism.

4. **GRAPHICS (MINIMUM 1 SHEET):**
 Determination of various Reactions in Beams and Trusses by Graphical Methods (Funicular and Maxwell diagrams).

5. **CAD (MINIMUM 2 SHEETS):**
 Introduction to CAD tools – basics, The User Interface, Start, Organize, and Save a Drawing, Control the Drawing Views, Display Multiple Views in Model Space, 2D tools & commands of CAD software, Creating Drawings & Using text, Use of Drawing and modify toolbar, Grouping of Objects, Complete 2D drawing, Drawing and modify toolbar for 3D drawing, Work on three dimensional objects.

BOOKS:
1. **ELECTRONICS COMPONENTS:**

2. **MEASURING INSTRUMENTS:**
 Use Analog & digital multimeters, CRO, power supply and Function generator, Testing various electrical and electronic components using multimeters and CRO.

3. **CABLES, CONNECTORS AND SWITCHES:**
 CABLES: General specifications of cables- characteristic impedance, current carrying capacity, flexibility. Types of cables: SWG Single core, Multi core, Single strand, Multi strand and their types, Shielded wires, Coaxial cables, Twisted pair, UTP cables, Flat ribbon cable, Teflon coated wires, optical Fiber Cable. CONNECTORS: General specifications of connectors- contact resistance, breakdown voltage, insulation resistance, applications of BNC, D series, Audio, Video, printer, edge, FRC, RJ 45 connectors. SWITCHES: Toggle switch- SPDT, DPDT, TPDT, Centre off, Without center-off, Rotary switch types depending on their poles and positions Rocker switch, Push button latch and non-latch, Tactile switch, Micro switch, Limit switch, DIP switch, Thumb wheel switch- BCD, Decimal, Membrane switch.

4. **WORKSHOP PRACTICE:**
 Use of various workshop tools: nose pliers, wire stripper, wire cutter. Study and understanding electronic circuit diagrams. Transfer and testing of circuit diagram to Bread. General purpose PCB, Custom made PCB- types of PCB and their use, Transfer and testing of circuit diagram to PCB, Soldering and De-soldering - technique-requirements and methods.

TEXT BOOKS:

REFERENCE BOOKS:
2. Data sheets of transistors and ICs.
1. FOURIER SERIES
Euler’s formula, Conditions for a Fourier expansion, Functions having points of discontinuity, Change of interval, Odd and even periodic functions, Expansion of odd and even periodic functions, Half-range series, Typical wave-forms, Parseval’s formula, Practical harmonic analysis.

2. ORDINARY DIFFERENTIAL EQUATIONS:
Brief review of first order ordinary differential equations, Exact equations, Equations reducible to exact equations, Equations of the first order and higher degree, Clairaut’s equation, Applications of differential equations of first order (Orthogonal trajectories). Linear differential equations with constant co-efficients, Complimentary functions and particular integral, Method of variation of parameters, Equations reducible to linear equations with constant co-efficients (Cauchy’s and Legendre’s linear equations), Simultaneous linear equations with constant co-efficients, Applications of linear differential equations in engineering.

3. COMPLEX NUMBERS:
Applications of De Moivre’s theorem, Exponential, Circular, Hyperbolic and Logarithmic functions of a complex variable, Inverse Hyperbolic functions, Real and imaginary parts of Circular and Hyperbolic functions, Summation of the series ‘C+iS’ method.

4. FUNCTIONS OF COMPLEX VARIABLE:
Limit and derivative of complex functions, Cauchy-Riemann equations, Analytic functions and its applications, Geometrical representation of complex function, Conformal mapping and standard transformations, Complex integration, Cauchy’s theorem, Cauchy’s integral formula, Series of complex terms, Taylor’s and Laurent’s series, Cauchy’s residue theorem and its application for the evaluation of real definite integrals.

5. INTEGRAL TRANSFORMS:
Laplace Transforms of standard functions and their properties, Inverse Laplace Transforms, General Properties of inverse Laplace transforms and Convolution Theorem, Laplace Transforms of periodic functions, Bessel functions, Error function, Dirac-delta Function, Heaviside’s Unit Function, Applications to linear simultaneous differential equations.

TEXT BOOKS:

REFERENCE BOOKS:
1. **Polymers**
Introduction, classification, tacticity, types of polymerization, coordination polymerization, mechanisms of polymerization, synthesis and applications of some important polymers; Effect of polymer structure on properties; Moulding of plastics into articles; Conducting polymers: preparation, types, properties and applications.

2. **Science of Composite Materials**
Introduction, Classification, constituents of composites; Fiber reinforced composites, unidirectional fiber reinforced composites, short fibre reinforced composites, particle reinforced composites; Important types and failures of fiber reinforced composites; Advantages and applications of composites.

3. **Characterization Techniques**
Introduction to spectroscopy; UV-Visible spectroscopy: Absorption laws, Instrumentation, formation of absorption bands; Theory of electronic spectroscopy, Chromophore and auxochrome concept, fluorescence & phosphorescence, application of UV-Visible spectroscopy; IR spectroscopy: Principle, theory of molecular vibrations, selection rules, spectral features of some classes of compounds, important features of IR spectroscopy and applications; NMR: Principle, relaxation processes, Instrumentation, shielding-desheilding effects; Spinspin coupling, coupling constant, applications of NMR; MS spectroscopy: Basic principle, Instrumentation, determination of molecular formulae, important features of mass spectroscopy; Chromatography: Introduction, types, gas chromatography; thermal method: Instrumentation, fundamental principles and applications of TGA, DTA and DSC.

4. **Nanochemistry**
Introduction to nanochemistry, synthesis, characteristics and applications of carbon nanostructures: fullerenes, carbon nanotubes and graphene.

5. **Fuels and Non-Conventional Energy Sources**
Introduction, classification, solid, liquid and gas fuel; Nuclear energy: Breeder reactor and light water nuclear reactor for power generation (Block diagram only), solar energy conservation and solar cells; Fuel Cells: Introduction, types and their characteristics, alternate fuels.

6. **Corrosion and Its Control**
Introduction, Types of corrosion – chemical and electrochemical; Mechanisms of corrosion, factors affecting corrosion and different protection techniques for corrosion control.

7. **Lubricants**
Introduction, Mechanisms of lubrication, Types and selection of lubricants, synthetic lubricants, properties and different methods for testing of lubricating oils and greases. Books recommended.

TEXT BOOKS:

2. Engineering Chemistry: by P C Jain & Monika Jain
3. A Text Book of Engineering Chemistry: by Shashi Chawla

REFERENCE BOOKS:

1. Fundamental of organic spectroscopy by Y. R. Sharma
2. Introduction to spectroscopy by Pavia, Lampman, Kriz.
4. Introduction to nanotechnology by C. P. Poole Jr. and F.J. Owens
5. Principles of polymerization by George Odian
1. **The Process of Communication**
 Introduction. What is communication? Barriers to communication. Different types of communication. Written vs. oral communication. Different types of face-to-face interactions, characteristics and conventions of conversation, conversational problems of second foreign language users, difference between conversation and other speech events.

2. **Telephone Techniques**
 Speaking and listening, commonly used phrases in telephone conversations, reading: conference calls, vocabulary, writing and listening, leaving a message, grammar and usage: the perfect tense, pronunciation: contracted forms.

3. **Job Applications And Interviews**
 Reading, vocabulary, apply for a job, curriculum vitae, language focus: some useful words, study skills: preparing for an interview, listening, speaking, writing.

4. **Group Discussions**
 Reading, writing skills, listening: how to be successful in a group discussion, study skills, language facts, vocabulary, speaking, grammar: connectives, pronunciation.

5. **Managing Organisational Structure**
 Warm up, value to influence and lead, reading: the role of a manager, vocabulary: leadership. Speaking and listening, language focus, degree of probability Grammar: modals, writing, reports, pronunciation.

6. **Meetings**
 Reading: a successful meeting, speaking: one to one meetings, language focus: opening, middle and close, study skills, editing, listening, criteria for successful meetings, vocabulary, grammar: reporting verbs, writing: memos, pronunciation: stress according to part of speech.

7. **Taking Notes And Preparing Minutes**
 Taking notes, the note-taking skill: the essential components, the note-taking skill: an example preparing minutes, format of minutes, language and style of minutes, grammar: using the passive voice.

8. **Presentation Skills-I**
 Reading, presentation skills, grammar: verbs often required in presentations, language focus, listening: importance of body language in presentations, speaking: preparing an outline of a presentation, pronunciation.

9. **Presentation Skills-II**
 Reading: structure of presentation, study skills: visual aids, ending the presentation, language focus: taking about increase and decrease grammar: prepositions. Listening: podium panic, speaking, pronunciation: emphasizing the important words in context.

10. **Negotiation Skills**
 Language focus, idiomatic expressions, study skills: process of negotiations, grammar: phrasal verbs, listening: effective negotiations, speaking, writing.

Reference books:

2. Developing communication skills by krishna mohan Pub: Mac Millan India Limited (2009)
1. Electric Circuits
 Introduction to linear and non linear circuits, circuit elements, various sources and source transformation, star delta transformation, solution of D.C. circuits using Kirchoff’s laws, signal wave forms and passive elements specifications, basic theorems, generation of A.C. sinusoidal voltage and currents, average and r.m.s. values, Form factor and peak factor, phasor representation, phasor in polar, rectangular and exponential forms, terminal relationship for pure passive elements and their combination in series and parallel.
 Introduction to Domestic Electric Wiring and Storage Batteries.

2. Electromagnetic and Transformer
 Magnetic circuit concept, B-H curves characteristics of magnetic materials, practical magnetic circuits, magnetic circuits with D.C. and A.C. excitation, hysteresis and eddy current losses.

3. Measuring Instruments
 Introduction to galvanometer (Moving coil and moving iron), ammeter, voltmeter, wattmeter, energy meter, use of shunt and multiplier.

4. Electrical Machines

BOOKS/REFERENCES:

1. INTRODUCTION:
Fundamental of vector algebra, Scalar & vector fields, Introduction and transformation on different coordinate systems: (rectangular, cylindrical and spherical co-ordinate system). Introduction to line, surface and volume integrals, definition of gradient, divergent and curl of a vector and their physical significance.

2. ELECTROSTATICS:
Principal of Coulomb's law, definition of electric field intensity from point charges, field due to continuous distribution of charges on an infinite and finite line, Electric Field due to an infinite uniformly charged sheet. Gauss’s’s law and its applications, Electric flux density, potential fields due to electric dipole, laplace’s and poisson’s equations.

3. MAGNETOSTATICS:
Definition and explanation on Magnetic Field intensity due to a finite and infinite wire carrying current. Magnetic field intensity on rectangular loop carrying current, Ampere’s Circuitual law and its applications, Biot-savart law, the Lorentz force equation for a moving charge, Magnetic Vector Potential.

4. TIME VARYING EM FIELDS:
Maxwell's equation in differential and integral vector form and their interpretations, continuity of currents, conduction and displacement current, boundary conditions, Helmholtz equations, uniform plane wave in dielectric and conductor media, skin effect and depth of penetration, reflection and refraction of plane waves at boundaries for normal incidence and surface impedance. Energy Flow and Poynting theorem, interpretation of $E \times H$, Simple application, complex pointing vector.

5. TRANSMISSION LINES:
Transmission line model, parameters and properties of transmission line equations, reflections in transmission lines; voltage, current and impedance relations-open, short circuit and matched lines, Standing wave ratio; impedance matching, quarter and half wave lines, single stub and double stub matching; circle diagram - Smithchart.

TEXT BOOKS:
4. Electromagnetic waves & radio system by Jorden R.F.

REFERENCES:
1. Electromagnetics, JD Kraus, McGraw-Hill.
3. Principle and applications of Electromagnetic fields by Ptonsey R and Collin R.P.
1. **Fourier transforms**

2. **Partial Differential Equations:**
 Formation and solution of partial differential equations, Lagrange’s Linear Equation of the first order, homogenous linear equations with constant coefficients, Classification of Partial Differential Equations, Method of Separation of variables, Solution of Wave equations, diffusion equations, Laplace’s equations, transmission line equations, simple applications of PDES.

3. **Special FUNCTIONS:**
 Series solutions ordinary differential equations, Solution of Bessel and Legendre differential equation, Bessel functions, Legendre functions, recurrence relations, orthogonality properties, Ber and Bei functions.

4. **Probability, Distributions & Statistics:**
 Introduction to Random variables & probability, Conditional Probability, Probability density function, Discrete and continuous distribution, Mean, medium, mode and standard deviations of standard distributions, Central Limit theorem, Generating functions, correlation and regression analysis. Urn model, Stochastic Independence, Independent trials, Baye’s Rule, Bernoulli Trials, Binomial, Gaussian, Rayleigh, exponential, geometrical and uniform distributions, their density functions and applications.

5. **Convolution Ergodicity & Queuing Models:**
 Stochastic process, Queuing systems and disciplines, Poisson and exponential process, classification of queues, Markov chains, definition, examples, Markovian models & finite population Markovian Models, Ergodicity, Random walk with retaining barrier, absorbing barriers, characteristics of queuing systems, queuing Notations.

Books Recommended:
1. **Low Frequency Transistor Amplifier**
 Equivalent circuit of BJT using h-parameter for CB, CE and CC & configuration, calculation of transistor parameter for CB, CE & CC using h-parameters, comparison of transistor amplifier configuration.

2. **Multistage Amplifier**
 General cascaded system, RC coupled amplifier and its frequency response, merits and demerits, cascade amplifier, Darlington compound configuration, multistage frequency effect.

3. **High Frequency Response of Transistor Amplifier**
 High frequency model for CE configuration, approximate CE high frequency model with resistive load, CE short circuit current gain, HF current gain with resistive load.

4. **Large Signal Amplifier**
 Analysis and design of class A, B, AB, C amplifiers, push pull amplifiers, transformer less output stages, distortion calculations.

5. **Tuned Amplifier**

6. **Feedback Amplifier**
 Feedback concept, characteristics of negative and positive feedback. Effect of negative and positive feedback on input impedance, output impedance, gain, and noise and frequency response.

7. **Oscillators**
 Classification of Oscillators, frequency and frequency stability of oscillatory circuits, Tuned based Oscillators, Hartley Oscillator, Colpitts Oscillators Clapp Oscillator, Crystal Oscillator, Phase Shift Oscillator, Wein Bridge Oscillator

TEXT BOOKS:
1. Integrated devices & circuits by Millman & Halkias.
2. Electronic Devices & circuit theory by R. Boylestad.
1. **Number System & Codes**
 Number systems and their interconversion, Binary Arithmetic (Addition, Subtraction, Multiplication and Division), Diminished radix and radix compliments, BCD codes, Excess-3 code, Gray code, Hamming code, error detection and correction.

2. **Logic Gates & Logic Families**
 Digital Logic Gates, Various Logic Families like RTL, DTL, TTL and ECL, I^2L, working and their characteristics, MOS and CMOS devices, TTL CMOS Interfacing, IEEE/ANSI-representation of Logic Families.

3. **Combinational Logic Design**

4. **MSI and PLD Components**
 Binary adder and subtractor, Multiplexers, Decoders/Demultiplexers, Read Only Memory, Programmable Logic Arrays, Programmable Array Logic, Implementation of Combinatorial Logic using these devices.

5. **Sequential Logic Design**

Text Books:

References:
1. Digital Principle and Applications Malvino and Leach- (TMH)
2. Modern Digital Systems Design: Cheung (WPC)
1. **Introduction**
 Review of circuit analysis using Kirchoff’s laws, nodal and mesh analysis, solution by classical method and Laplace transform, concept of independent and dependent sources, analysis of special signal waveforms, and duality of networks, Brief review of Signals and Systems.

2. **Network Theorems**
 Superposition and Reciprocity theorem, Thevenin’s and Norton’s theorem, Millman’s theorem, maximum power transfer theorem, compensation, Tellegen’s theorem, analysis of circuits using theorems.

3. **Transient Analysis of Networks**
 Network elements, Transient response of R-L, R-C, R-L-C for DC and sinusoidal excitation, Initial condition, Solution using differential equation approach and Laplace transform method.

4. **Network Analysis**
 State variable method, Analytic and numerical solutions, Two Port Networks, Graph theoretic analysis for large scale networks, Formulation and solution of network graph of simple networks, State space representation, Analysis using PSPICE.

5. **Network Synthesis**

6. **Passive Filter Design**
 Butter worth and Chebyshev approximations, Normalized specifications, Frequency transformations, Frequency and impedance denormalisation, Types of frequency selective filters, Linear phase filters.

Text Books:
1. “Network and systems” by D.Roy - Choudhary

References:
1. FREQUENCY AND TIME DOMAIN REPRESENTATION AND ANALYSIS
 Introduction to information, messages & signals, Classification of signals, The discrete and continuous spectrum, Power spectrum, Energy density spectrum, Dirac delta functions, Sampling theory and approximations, Convolution of signals, LTI systems.

2. RANDOM SIGNAL THEORY

3. NOISE
 Atmospheric, Thermal, Shot and Partition noise, Noise figure and experimental determination of noise figure, Shot noise in temperature limited diode and space charge limited diodes, Pulse response and Digital noise.

4. TRANSMISSION THROUGH NETWORKS
 Networks with random input, Auto-correlations, Spectral density and probability density input-output relationships, Optimum system and non-Linear systems, Maximum criterion, Equivalent noise bandwidth.

5. BASIC INFORMATION THEORY
 Definition of information, Units of information, Entropy, Uncertainty and information rate of communication, Redundancy, Relation between system capacity and information content of messages, Shannon’s theorem, Discrete noisy channel, Channel capacity for different discrete channels.

TEXT BOOKS:
 1. Hancock J.C. "Elements of Communication Theory".
 2. Sharma Sanjay “Signals and Systems”.

REFERENCE BOOKS:
 1. Swartz, "Information & Transmission".
 2. Taub & Schilling, "Principalss of Communication System".

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/
1. **INTRODUCTION:**
Data types, data structures, abstract data types, the running time of a program, the running
time and storage cost of algorithms, complexity, asymptotic complexity, big O notation,
obtaining the complexity of an algorithm.

2. **DEVELOPMENT OF ALGORITHMS:**
Notations and Analysis, Storage structures for arrays - sparse matrices - structures and arrays
of structures, Stacks and Queues: Representations, implementations and applications.

3. **LINKED LISTS:**
Singly linked lists, Linked stacks and queues, operations on Polynomials, Doubly Linked
Lists, Circularly Linked Lists, Operations on linked lists- Insertion, deletion and traversal,
dynamic storage management – Garbage collection and compaction.

4. **TREES:**
Basic terminology, General Trees, Binary Trees, Tree Traversing: in-order, pre-order and
post-order traversal, building a binary search tree, Operations on Binary Trees - Expression
Manipulations - Symbol Table construction, Height Balanced Trees(AVL), B-trees, B+ -trees.

5. **GRAPHS:**
Basic definitions, representations of directed and undirected graphs, the single-source shortest
path problem, the all-pair shortest path problem, traversals of directed and undirected graphs,
directed acyclic graphs, strong components, minimum cost spanning tress, articulation points
and biconnected components, graph matching.

6. **SORTING AND SEARCHING TECHNIQUES:**
Bubble sorting, Insertion sort, Selection sort, Shell sort, Merge sort, Heap and Heap sort,
Quick sort, Radix sort and Bucket sort, Address calculation, Sequential searching, Binary
Searching, Index searching, Hash table methods.

TEXT AND REFERENCE BOOKS:
1. J.P. Tremblay and P.G. Sorenson, “An Introduction to Data Structures with applications”,
 Tata McGraw Hill.
 Education
 C”, Thomson Brooks / COLE

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/

2. **INTRODUCTION TO OPERATIONAL AMPLIFIERS**: The basic operational amplifier & its schematic Bsymbol, Block diagram representation of OP-AMP, Power supply requirements of an OP-AMP, Evolution of OP-AMP., Specification of a typical OP-AMP (741).

3. **THE PRACTICAL OP-AMP**: Input offset voltage, input bias current, input offset current. total output offset voltage, thermal drift, error voltage, variation of OP-AMP parameter with temperature & supply voltage. Supply voltage rejection ration (SVRR), CMRR-Measurement of OP-AMP parameters.

5. **OPERATIONAL AMPLIFIER CONFIGURATIONS & LINEAR APPLICATION**:

6. Open loop OP-AMP configurations- The differential amplifier, inverting amplifier, non-inverting amplifier, negative feed back configurations - inverting and non inverting amplifiers, voltage followers & high input impedance configuration, differential amplifiers, closed loop frequency response & circuit stability, single supply operation of OP-AMP, summing, scaling and averaging amplifier, voltage to current & current to voltage converters, integrators & differentiators, logarithmic & anti logarithmic amplifiers

7. **ACTIVE FILTERS & OSCILLATORS**: Advantages of active filters, classification of filters, response characteristics of butter worth, chebyshev, causal filters, first order and second order butter worth filters- low pass and high pass types. Band pass & band reject filters. Oscillator principles, types of oscillators - phase shift, wein bridge & quadrature. square wave, triangular wave and saw tooth wave generators, voltage controlled oscillator.

8. **COMPARATORS & CONVERTERS**: Basic comparator & its characteristics, zero crossing detector, voltage limiters, clippers & clamplers, small signal half wave & full wave rectifiers, absolute value detectors, sample and hold circuit.

TEXT BOOKS:
2. Design with operation amplifiers and Analog Integrated circuits by Sergei Franco.
3. Integrated Electronics: Analog and Digital circuits & system by Millman & Halkias.
4. Linear Integrated Circuits by D.R.Chaudhary (WEL).
1. **Introduction to Sequential Circuits**
 Flip –Flops, Flip-Flop conversions, Classification of Sequential Circuits. Registers and Counter circuits.

2. **Design & Analysis of Synchronous Sequential Circuits**
 Sequential circuits introductory examples, Counters, Finite state Machines, Sequence Detector and Sequence Generator circuits, Definite state model Basic definition, Capabilities & Limitation of finite state machines, state equivalence & machine minimization, simplification of incompletely specified machines, Extraction of maximum compatibles, synthesis & analysis of synchronous sequential circuits.

3. **Design & Analysis of Asynchronous Sequential Circuits**
 Introduction to asynchronous circuits, timing diagram, state diagram & flow tables, fundamental mode circuits, synthesis, state assignment in asynchronous sequential circuits.

4. **Hazards**
 Introduction, gate delays, generation of spikes, production of static hazards in combinational networks, elimination of static hazards, design of hazard free combinational networks, hazard free asynchronous circuit design, dynamic hazards, essential hazards.

5. **Contact Networks & Symmetric Networks**

Text Books:
1. Switching and finite automata theory by ZVI Kohavi.
2. Logical design of switching circuits by Douglas Lewin.

References:
1. Logic Design by N.N Biswas.
1. **Modulation Techniques**
 Various frequency bands used for communication, Types of Communication and need of modulation. Introduction to AM, FM, PM, frequency spectrum of AM Waves, Representation of AM, Power relation in AM waves, Need and description of SSB, Suppression of carrier, Suppression of unwanted side-bands, Independent sideband system, Vestigial sideband system, Mathematical representation of FM, Frequency spectrum of AM waves, Phase Modulation, Comparison between analog and digital modulation, wideband and narrow band FM.

2. **AM Transmitters and Receivers**
 AM Transmitters: Generation of AM, low level and high level modulation, comparison of levels, AM transmitter block diagram, collector class C modulator, Base Modulator, Transistor Vander Bil modulator, DSB S/C modulator. AM Receiver: Tuned radio frequency (TRF) receiver. Super heterodyne receiver, RF section and characteristics, mixers, frequency changing and tracking, IF rejection and IF amplifiers. Detection and automatic gain control (AGC), AM receiver characteristics.

3. **FM Transmitters and Receivers**
 FM Transmitters: Basic requirements and generation of FM, FM Modulation methods: Direct methods, Variable capacitor Modulator, Varactor Diode Modulator, FET Reactance Modulator, Transistor Reactance Modulator, Pre-emphasis, Direct FM modulator, AFC in reactance modulator, Disadvantages of direct method, Indirect modulators, RC-phase shift modulators, Armstrong FM systems. FM Receivers: Limiters, single and double-tuned demodulators, balanced slope detector, Foster-Seely or Phase Discriminator, De-emphasis, ratio Detector, Block diagram of FM Receivers, RF Amplifiers, FM Receiver characteristics.

4. **SSB Transmitters and Receivers**
 Generator of SSB, balanced modulator circuit, filter method, phase shift method, third method, Phase cancellation method, Demodulation of SSB, product demodulator, Diode detection technique of SSB.

5. **Pulse Modulation Techniques**
 Pulse amplitude modulation and demodulation, Pulse width modulation and demodulation, Pulse position modulation and demodulation, Sampling theorem, Time Division Multiplexing, Frequency Division Multiplexing.

Text Books:
1. Electronic communication systems by George Kennedy.
2. Principle of communication systems by Taub and schilling.

References:
1. Electronic communication systems by Tomasi.

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/
1. **Miniaturization of Electronic Systems & its impact on characterization**

2. **Monolithic Fabrication Techniques**
 - **Epitaxial Process**: Need of epitaxial layer, vapors phase epitaxy -reactor design, chemistry of epitaxial process, transport mechanism doping & auto doping, selective epitaxy, epitaxial process induced defects, molecular beam epitaxy, merits and demerits among epitaxial processes, recent trends in Epitaxy.
 - **Oxidation**: Importance of oxidation, types of oxidation techniques, growth mechanism & kinetics, factors affecting the growth mechanisms, silicon oxidation model, dry & wet oxidation, oxidation induced faults, recent trends in oxidation.
 - **Lithography**: Basic steps in lithography, lithography techniques-optical lithography, electron beam lithography, x-ray lithography, ion beam lithography, resists and mask preparation of respective lithographies, printing techniques-contact, proximity printing and projection printing, merits and demerits of lithographies, recent trends in lithography at nano regime.
 - **Etching**: Performance metrics of etching, types of etching- wet and dry etching, dry etching techniques-ion beam or ion milling, sputter ion plasma etching and reactive ion etching (RIE), merits and demerits of etching, etching induced defects.
 - **Diffusion and Ion Implantation**: Diffusion mechanisms, diffusion reactor, diffusion profile, diffusion kinetics, parameters affecting diffusion profile, Dopants and their behavior, choice of dopants, Ion Implantation- reactor design, impurity distribution profile, properties of ion implantation, low energy and high energy ion implantation.
 - **Metallization**: Desired properties of metallization for VLSI, metallization choices, metallization techniques –vacuum evaporation, sputtering.

3. **Monolithic Components & their Isolation**
 Diodes and Transistors, MOSFETs (Enhancement and depletion mode), Resistors, Capacitors, MOS, CMOS. Various isolation techniques.

4. **Assembly Techniques & Packaging of VLSI chip**
 Introduction to packaging, packaging process, package design considerations, various package types.

5. **Fundamentals of MEMS/NEMS Design & Fabrication**
 Needs for MEMS, MEMS material, MEMS Features, MEMS design limits and safety factors, MEMS processing techniques: Lithography, Galvanik Abforming (LIGA), Lift-off, Chemical Mechanical Polishing, Surface micromaching, Bulk micromaching, Deep Reactive Ion Etching, Application of MEMS, Recent trends in MEMS/NEMS. Challenges and opportunities associated with bringing MEMS to market, Basic MEMS operating principles.

Text Books:
1. S.M. Sze, “VLSI Technology”, TMH

References:

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)

http://www.nith.ac.in/ece/
1. **Instrumentation Scheme & Characteristics**
 Definition, Application and Methods of measurements, instrument classification, Functional Elements of an instrument, input output configuration of measuring instruments, Methods of Correction for interfering and modifying inputs, Standards, calibration, Accuracy, Precision, Loading effects, selection of instruments, Measurement systems–Static and dynamic characteristics, Zero order, first order and second order systems & their response.

2. **Error analysis**
 Types of errors, Methods of error analysis, uncertainty analysis, statistical analysis, Gaussian Error distribution, Rejection of data, method of least square, curve fitting, graphical analysis, General consideration in data analysis.

3. **DC & AC Measurement:**
 Analog Ammeter, Voltmeter and Ohmmeters, PMMC, Moving Iron, Electro-dynamometer, Electrostatic, Ohmmeter, Digital type voltmeter, AC voltmeter using rectifier, true RMS voltmeter, Digital VOM meter.

4. **Transducers:**

5. **Display and Indicating Devices:**
 Telemetry & Remote sensing, GIS (Geographical information System), Digital display devices & Recorder, CRO.

6. **Signal Generators & Analyzers**
 Function generators, RF signal generators, Sweep Frequency generator, Frequency synthesizer, Wave analyzer, Harmonic distortion analyzer, Spectrum analyzer.

Text Books:
2. Electrical and Electronic Measurements and Instrumentation by A. K Sawhney.

References
1. Instruments & Measurement for Electronic by Clyde N. Herrick.
RELIABILITY AND QUALITY MANAGEMENT

<table>
<thead>
<tr>
<th>ECD-226</th>
<th>RELIABILITY AND QUALITY MANAGEMENT</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

1. **RELIABILITY:**
 Life of components and classification of failures of components and systems, importance of reliability definition of reliability, distribution function (i) normal (ii) log-normal (iii) exponential and wibull and their importance in reliability theory.

2. **RELIABILITY EVALUATION:**
 For non-maintained and maintained system having functional blocks in (i) series (ii) parallel (iii) series parallel (iv) Non series parallel

3. **RELIABILITY IMPROVEMENT:**
 Improvement of components: Redundancy, stand by with perfect and imperfect switching, comparison of component redundancy to system redundancy.

4. **AVAILABILITY OF SYSTEM:**
 Types of availability and factors affecting it.

5. **MAINTAINABILITY:**
 Concept and definition of maintainability, objective of maintenance, classification of maintenance, factors effecting maintenance levels, diagnostic instruments, documentation, inventory control of spare parts, Maintenance personnel, Pre-votive maintenance schedules for Electronic and Communication Systems.

TEXT BOOKS
1. Reliability engineering by A.K. Gobil.
2. Concept of Reliability Engineering-I (Second Ed.) by S.Srinath

REFERENCE BOOKS
1. Reliability engineering by K.K. Agarwal.
1. **Introduction to Microprocessors & Microcomputers**
 History and Evolution, types of microprocessors, Microcomputer Programming Languages, Microcomputer Architecture, Intel 8085 Microprocessor, Register Architecture, Bus Organization, Registers, ALU, Control section, Instruction set of 8085, Instruction format, Addressing modes, Types of Instructions.

2. **Assembly Language Programming and Timing Diagram**
 Assembly language programming in 8085, Macros, Labels and Directives, Microprocessor timings, Micro instructions, Instruction cycle, Machine cycles, T-states, State transition diagrams, Timing diagram for different machine cycles.

3. **Serial I/O, Interrupts and Comparison of Contemporary Microprocessors**
 Serial I/O using SID, SOD. Interrupts in 8085, RST instructions, Issues in implementing interrupts, Multiple interrupts and priorities, Daisy chaining, interrupt handling in 8085, Enabling, Disabling & masking of interrupts.

4. **Data Transfer techniques**
 Data transfer techniques, Parallel & Programmed data transfer using 8155. Programmable parallel ports & handshake input/output, Asynchronous and Synchronous data transfer using 8251. PIC (8259), PPI (8255), DMA controller (8257).

5. **Microprocessor Interfacing Techniques**
 Interfacing Traffic Light Interface, Stepper Motor, 4 Digit 7 Segment LED, Elevator, Musical Tone Generator & 8 Channel 12Bit ADC with Multiplexor & A/D converters, D/A converters.

6. **Architecture of Typical 16-Bit Microprocessors (Intel 8086)**
 Introduction to a 16 bit microprocessor, Memory address space and data organization, Segment registers and Memory segmentation, Generating a memory address, I/O address space, Addressing modes, Comparison of 8086 & 8088, Basic configurations of 8086/8088, Min. Mode, Max. Mode & System timing, Introduction to Instruction Set of 8086.

Text Books:
1. R.S. Gaonkar, Microprocessor Architecture, Programming & Applications with the 8085/8080A, Wiley Eastern Ltd.

References:
1. M. Rafiquzzman: Microprocessors: Theory & Applications (Intel & Motorola), PHI.
2. Berry .B. Bray INTEL 8086/88, 80186, 286, 386, 486, Pentium Pro & Pentium IV.

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/
1. **Analog to Digital Conversion**
 Noisy communications channels, The sampling Theorem, low pass signals and band pass signals, pulse Amplitude modulation, channel bandwidth for a PAM signal, Natural sampling, Flat top sampling, signal recovery & holding, Quantization of signal, Quantization error, pulse code modulation (PCM), Delta Modulation, adaptive delta modulation.

2. **Digital Modulation Techniques:**
 Binary phase shift keying, differential phase shift keying, differential encoded PSK, QPSK, Quadrature Amplitude shift keying (QASK) Binary frequency shift keying.

3. **Data Transmission:**
 Base band signal receiver, probability of error, the optimum filter, and white noise-the matched filter, probability of error of the matched filter, coherent reception: correlation, application of coherent reception in PSK and FSK. Correlation receiver for QPSK.

4. **Noise in Pulse Code & Delta Modulation Systems:**
 PCM transmission, calculation of quantization noise, the O/P signal power, the effect of thermal noise, O/P signal to noise ratio in PCM, Delta Modulation, Quantization noise in delta modulation, the O/P signal to quantization noise ratio in delta modulation, O/P signal to noise ratio in delta modulation.

5. **Information Coding and Decoding:**
 Coding for error detection and correction, Block coding – coding, anticoding, Hadamard code, Hamming code, Cyclic Codes, Convolution coding and decoding, Viterbi algorithm, Shannon Fano and Hoffman Codes.

Text Books:

Reference Books:
1. **ELECTROMAGNETIC RADIATION**
Radiation phenomenon from an oscillation dipole in free space, induction and radiation fields, Retarded potentials, Radiated power and radiation resistance from a short dipole, half wave dipole and quarter wave monopole.

2. **ANTENNA BASICS**
Directional properties of antennas, Radiation patterns, antenna gain and aperture, antenna terminal impedance, self and mutual impedance, front to back ratio, antenna beam width and bandwidth, antenna efficiency, antenna beam area, polarization, antenna temperature and Reciprocity properties of antennas.

3. **ANTENNA ARRAYS**
Classification of arrays, linear arrays of two point sources, linear arrays of n-point sources, pattern multiplication, array factor, linear arrays of equal amplitude and spacing (Broadside and end fire arrays) of n-point sources, directivity and beam width, non-uniform arrays excitation using Binomial series.

4. **SPECIAL ANTENNAS**
VLF and LF antennas (Hertz and Marconi antennas), effects of antenna height and effect of ground on performance of antenna, Rhombic antennas, Loop antennas, receiving antenna and radio direction finders. Folded dipole antennas, Yagi-uda antenna, horn antennas, microwave dish, helical antennas, frequency independent antennas, microstrip antennas, fractal antennas.

5. **GROUND WAVE PROPAGATION**
Characteristics for ground wave propagation, reflection at the surface of a finitely conducting plane and on earth, Attenuation Calculation of field strength at a distance.

6. **IONOSPHERE PROPAGATION**
The ionosphere, formation of the various layers, their effective characteristics, reflection and refraction of waves by ionosphere, virtual height, maximum frequency, skip distance, regular and irregular variation of ionosphere, Fading and Diversity reception, ordinary and extraordinary waves.

7. **SPACE WAVE PROPAGATION**
Space wave, range and effect of earth, Troposphere waves-reflection, refraction, duct propagation, Troposphere scatter propagation link

Text Book
2. C.A. Balanis “Antennas Theory and Design”, Willey.

Reference Book
1. Introduction to device modelling
 Introduction, physical significance of device modelling, various devices used in device modelling. material used in device modelling.

2. Junction Diodes
 Depletion region of a p-n junction, Depletion-region capacitance, DC, small signal, large signal, high frequency model of diodes. Measurement and extraction of diode model parameters.

3. BJT
 DC, small signal, high frequency of bipolar junction transistors. Extraction of BJT model parameters, Transistor frequency response.

4. MOSFETs
 MOSFET fundamentals, Types of MOSFETs, Concept of threshold voltage, Large signal behavior MOSFETs, Comparison of operating regions of Bipolar and MOS Transistors, Shichman Hodges and Level-1 MOS Models, Introduction to Charge–Sheet Models.

5. Short & Narrow Channel Effects in MOSFETs
 Velocity saturation from horizontal field, Mobility degradation from the vertical field, Weak Inversion in MOS Transistors, Transistor frequency in weak inversion, Narrow & Short Channel Effects in MOSFETs.

6. Modern VLSI Devices
 Principal of hetrojunction devices, High speed devices compound devices, opto devices.

Text Books:

References
1. H.M. Rashid, Introduction to PSPICE, PHI.
2. B.G. Streetman & S. Baneerjee, Solid State Electronic Devices, PHI.
3. B. Razavi, Design of Analog CMOS Integrated Circuits, TMH.
1. **Basic Concepts**
 Historical review, Definitions, Classification, Relative merits and demerits of open and closed loop systems.

2. **Mathematical Models of Control System**
 Linear and non-linear systems, Transfer function, Mathematical modeling of electrical, mechanical and thermal systems, Analogies, Block diagrams and signal flow graphs.

3. **Control Components**
 DC servomotor, AC servomotor, Potentiometers, Synchronous, Stepper-motor.

4. **Time and Frequency Domain Analysis**
 Transient and frequency response of first and second order systems, Correlation ship between time and frequency domain specifications, Steady-state errors and error constants, Concepts and applications of P, PD, PI and PID types of control.

5. **Stability Analysis**
 Definition, Routh-Hurwitz criterion, Root locus techniques, Nyquist criterion, Bode plots, Relative stability, Gain margin and phase margins.

6. **State Variable Analysis**
 Introduction, Concept of State, State variables & State models, State Space representation of linear continuous time systems. State models for linear continuous –time systems, State variables and linear discrete time systems, Solution of state equations, Concept of Controllability & Observability.

BOOKS/REFERENCES:

1. **Introduction to MEMS**
 Introduction to MEMS and Microsystems, Materials and Substrates for MEMS, Sensors/Transducers, Sensors characterization and classifications, microactuators, Application of MEMS.

2. **Material Properties**
 MEMS materials, structural and sacrificial materials, properties of silicon, mechanical, electrical and thermal properties of materials, Basic modeling of elements in electrical and mechanical systems.

3. **MEMS Fabrication**
 MEMS Fabrication Technologies, single crystal growth, micromachining, photolithography, microstereolithography, thin film deposition, impurity doping, diffusion, etching, bulk and surface micromachining, etch stop technique and microstructure, LIGA.

4. **Mechanical Sensors & Actuators**

5. **Magnetic Sensors**
 Magnetic material for MEMS, magnetic sensing and detection, mannetoresistive sensors, hall effect, magnetodiode, megnetotransitors, MEMS magnetic sensors, RF MEMS.

6. **Thermal Sensors:**
 Temperature coefficient of resistance, Thermo-electricity, Thermocouples, Thermal and temperature sensors, heat pump, micromachined thermocouple probe, thermal flow sensors, shape memory alloy.

Text Books:
1. Analysis and Design Principles of MEMS Devices by Minhang Bao, ELSEVIER.

References

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/

<table>
<thead>
<tr>
<th>ECO-316/ECO-325 Open elective-I/II</th>
<th>TELECOMMUNICATION SYSTEMS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

1. **Introduction**
 Basic elements of communication network. Switching systems. Signaling and signaling functions.

2. **Telecommunication systems**

3. **Transmission modes**

4. **Switching systems**

5. **Timing recovery**

Text Books:

Reference Books:

1. **Microcontroller**

2. **Programming**
 Assembly Programming, Timer Registers, Timer Modes, Overflow Flags, Clocking Sources, Timer Counter Interrupts, Baud Rate Generation. Serial Port Register, Modes of Operation, Initialization, Accessing, Multiprocessor Communications, Serial Port Baud Rate.

3. **Interrupts**

4. **Introduction to Embedded Systems**
 Background and History of Embedded Systems, Definition and Classification, Programming languages for embedded systems: desirable characteristics of programming languages for embedded systems, Low-level versus high-level languages, Main language implementation issues: control typing. Major programming languages for embedded systems. Embedded Systems on a Chip (SoC), IP Cores and the use of VLSI designed circuits.

5. **Embedded software development**

6. **32-Bit Cortex-M Architecture**
 Technical overview, Important features, Instruction set, Memory system, exceptions and interrupts, exception handling, low power and system control features. Development with Keil and mbed.

Text Books:

References:
1. Introduction
 Evolution of wireless communication systems, Examples of wireless communication systems.

2. The cellular concept – system design fundamentals
 Concept of frequency reuse, Channel assignment strategies, Handoff strategies, Interference and system capacity, Trunking and grade of service, Improving coverage and capacity in cellular systems.

3. Propagation models
 Free space propagation model, Two-ray ground reflection model, Distance power loss, Macro-cell propagation model, Micro-cell propagation model, Shadowing model, Multipath effects in mobile communication, Models for multipath reception.

4. Equalization, diversity and channel coding

5. Multiple access techniques
 Introduction to multiple access, Frequency division multiple access, Time division multiple access, Spread spectrum multiple access, Space division multiple access, Packet radio, Orthogonal frequency division multiple access; Introduction to wireless systems and standards.

Text Book:
1. Wireless Communications: Principles and Practice by Theodore S. Rappaport; Pearson / PHI Publication

References:
1. Wireless Communications and Networks: 3G and Beyond by Iti Saha Misra; Tata McGraw Hill Publication
3. Wireless and Digital Communications by Dr. Kamilo Feher; PHI Publication
1. **Discrete-time signals and systems**
 Basic elements of a digital signal processing system, Advantages of digital signal processing, Classification of signals, The concept of frequency in continuous-time and discrete-time domain, Discrete-time signals and systems, Analysis of discrete-time linear shift-invariant systems, Linearity, Causality and stability criterion, Discrete-time systems described by difference equations.

2. **Discrete-time Fourier transform**

3. **Discrete Fourier Transform**
 Frequency domain sampling and the DFT, Properties of the DFT, Linear filtering methods based on the DFT, Efficient computation of the DFT: Decimation-in-time and decimation-in-frequency Fast Fourier transform algorithms.

4. **Z-transform**

5. **Digital filter structures**

6. **Digital filter design**

Text Books:

References:
1. Digital Signal Processing by Alan V. Oppenheim & Ronald W. Schafer; PHI Publication.
1. **MOSFETS**

2. **VLSI Design Styles**

3. **VLSI Physical Design**

4. **Memory Design**
 ROM Design, SRAM Design.

5. **CMOS Amplifier**
 Single stage CS amplifier, CG amplifier, CD amplifier

6. **CMOS Differential amplifier**
 Single Stage MOS Amplifier, Differential Amplifier and their analysis.

TEXT BOOKS:

REFERENCES:
1. K. Eshraghian & Pucknell, “Introduction to VLSI”, PHI.
1. Introduction
 Introduction and levels of abstraction, modeling and hierarchical design concepts, Languages, Compilation & Simulation, concurrency, Logic value system,

2. Language concepts
 Lexical conventions, data types, modules and ports, behavioral modeling, dataflow modeling, structural modelling

3. RTL Design
 Control & Data partitioning, Synthesis concepts, non synthesizable constructs, operators, expressions, conditional statements, post synthesis simulation, basic test bench

4. Advanced
 Procedures and timing control, procedural blocks, loops, Tasks and functions, Testbench modeling techniques, Path delay modeling, Timing analysis, User defined preimtives, compiler directives, system tasks.

5. Hardware modules
 Boolean equations, Encoders, Decoders, multiplexers, cascaded multiplexers, adders, comparators, multipliers, shifters, Mealy & Moore finite state machine, Implementation on FPGA.

TEXT BOOKS:

REFERENCES:
1. **Basic Economics Concept**
 Stock and flow, static and dynamic economics. Micro economics and macro economics, National Income concept.

2. **Market Demand**
 Demand, meaning and types, law of demands, exception to the law of demand, Elasticity of demand, Method of measuring elasticity of demand, marginal utility analysis.

3. **Production Analysis**
 Production function, law of returns, least cost combinations, cost and cost curves. Choice of plant size in the long run, law of supply, elasticity of supply.

4. **Cost Concepts and Estimation**
 Cost element, economics Vs accounting concept of cost and revenues, standard cost, Actual cost, overhead cost, cost control, Break-Even Analysis.

5. **Economic Appraisal Techniques**
 Long range and Short range budgeting, Industrial securities, criteria for project appraisal, social benefit-cost analysis, Deputation concept and techniques.

6. **Monetary System**
 Money and its function, function of the commercial bank and central bank, monetary policy.

7. **Inflation and Business Cycles**
 Causes, Effects and method of control Inflation. Concept of business cycles.

8. **Introduction to International Economics**
 Classification theory and modern theory of international trade, meaning of foreign exchange, equilibrium rate of exchange, purchasing power parity theory, impact of globalization of Indian Economy.

TEXT BOOKS/REFERENCES:

2. Modern Economic Theory: by Sampat Mukherjee, New Age International Publisher.

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/
1. OVERVIEW

2. LOSSES IN OPTICAL FIBER
Attenuation, Material absorption losses, linear and non linear scattering losses, fiber bend loss, dispersion viz. inter modal dispersion and intra modal dispersion, overall fiber dispersion and polarization, Dispersion shifted and dispersion flattened fibers, attenuation and dispersion limits in fibers, Kerr nonlinearity, self phase modulation, combined effect of dispersion and self phase modulation.

3. FIBER MATERIAL, COUPLERS AND CONNECTORS
Preparation of optical fiber: liquid-phase techniques, vapor phase deposition techniques, Connector Principles, Fiber End Preparation, splices, connectors.

4. OPTICAL SOURCES AND DETECTORS
Sources: Basic principle of surface emitter LED and edge emitter LED- material used, structure, internal quantum efficiency and characteristics, LASER Diode - material used, structure, internal quantum efficiency and characteristics, working Principle and characteristics of Distributed feedback (DFB) laser. Detectors: PIN photodiode - material used, working principle & characteristics, Avalanche Photodiode: - material used, working principle and characteristics

5. ADVANCED TOPICS
Optical TDM, SCM, WDM and Hybrid multiplexing methods, Fiber Optic Networks, Transreceivers for Fiber-Optic Networks, Semiconductor Optical Amplifiers, Erbium Doped Fiber Amplifiers (EDFAs).

6. OPTICAL NETWORKS

TEXT BOOKS:
1. Optical Fiber Communication Principles & Practice by John M.Senior, PHI Publication

REFERENCES:
3. Optical Networks Practical Perspective, by Rajiv Ramaswami, Kumar N. Sivarajan, Elsevier.
1. **POWER SEMICONDUCTOR DEVICES**
 Thyristor: Characteristics, Thyristor turn-on methods, Thyristor protection, Series and parallel operation of thyristors, Thyristor commutation; Characteristics of Diac and Triac; Power diode; Power transistor; Power MOSFET; IGBT.

2. **PHASE CONTROLLED CONVERTERS**

3. **DC CHOPPERS**
 Principle of chopper operation and control strategies, Step-up and step-down choppers, Types of chopper circuits, Voltage-commutated chopper, Current-commutated chopper, Load-commutated chopper.

4. **INVERTERS**
 Single-phase voltage source inverters, Modified McMurray half-bridge and full-bridge inverter, McMurray-Bedford half-bridge and full-bridge inverter, Pulse-width modulated inverters, Current source inverters, Series inverters, Parallel inverter.

5. **APPLICATIONS OF INDUSTRIAL ELECTRONICS**
 Switched mode power supply (SMPS), Uninterruptible power supplies, Solid state relays.

TEXT BOOKS:
1. Power Electronics: Circuits, Devices and Applications by Muhammad H. Rashid; Pearson / PHI Publication.
2. Power Electronics by Dr. P. S. Bimbhra; Khanna Publishers.

REFERENCES:
1. **ORBITAL MECHANISM**
 Satellite orbit and orbital equations, Kepler’s laws of planetary motion, locating satellite in the orbit, locating satellite with respect to earth, Look angle calculation, coverage angle and slant range, orbital perturbations, satellite launching, orbital effects in communication subsystem performance.

2. **SATELLITES**
 Satellite subsystems, Attitude and orbit control system, Telemetry tracking command and monitoring, power system, communication subsystem, satellite antennas.

3. **SATELLITE LINK DESIGN**
 Basic link analysis, Interference analysis, terrestrial interference, Intermodulation interference, inter-symbol interference and rain induced attenuation, uplink power control, system availability, system design for link without frequency reuse and system design for link with frequency reuse.

4. **EARTH STATION**
 Earth station antenna types, Antenna gain, antenna gain to noise temperature ratio, G/T measurement, frequency division multiple access, FDM-FM-FDMA, Single channel per carrier.

5. **SATELLITE BASED NAVIGATION SYSTEM:**
 The principle of measuring signal transit time, Basic principles of satellite navigation, Signal travel time Determining position, The effect and correction of time error, functional segments of GPS, Improved GPS: DGPS, SBAS, A-GPS and HSGPS.

TEXT BOOKS:

REFERENCE BOOKS:
1. Cathode ray tube display (CRT).

2. Liquid crystal display (LCD) - High-Performance Addressing display (HPA), Thin-film transistor display (TFT).

3. Light-emitting diode display (LED), Electroluminescent display (ELD), Organic light-emitting diode display (OLED).

4. 3D Display, Mobile Displays.

5. Fundamentals of HDTV, IPTV.

TEXT/REFERENCE BOOKS:
ECE-414(C) BIOMEDICAL ELECTRONICS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

1. **Biomedical Signals**
 Origins of Bioelectric Signals, Human body, Heart and Circulatory System, Electrodes, Transducers, ECG, EMG.

2. **Recording & Monitoring Instruments:**

3. **Imaging System:**
 Working with X-Rays, CT scanner, NMR, NMR, Ultrasonic System, Ultrasonic System, Ultrasonic System.

4. **Therapeutic & Physiotherapy Equipment’s:**
 Cardiac Pacemakers, Cardiac defibrillator, SW Diathermy & MW Diathermy.

5. **Patient Safety**
 Electric Shock Hazards, Test Instruments, Biomedical Equipment’s, Biomedical Equipment’s.

Text Books
2. Biomedical Instrumentation and Measurements: Leslie Cromwell, PHI.

Reference Books:
1. Introduction to bioinformatics: T.K. Attuwood, Pearson Education.
2. Introduction to biomedical equipment Technology: Joseph J. Carr & John M Brown, Pearson Education.
1. **Linear Wave Shaping:**
 High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. RC network as differentiator and integrator, attenuators, its applications in CRO probe, RL and RLC circuits and their response for step input, Ringing circuit.

2. **Non-Linear Wave shaping:**
 Diode clippers, Transistor clippers, clipping at two independent levels, Transfer characteristics of clippers, Emitter coupled clipper, Comparators, applications of voltage comparators, clamping operation, clamping circuits using diode with different inputs, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Transfer characteristics of clammers.

3. **Switching characteristics & Devices:**
 Diode as a switch, piecewise linear diode characteristics, Transistor as a switch, Break down voltage consideration of transistor, saturation parameters of Transistor and their variation with temperature, Design of transistor switch, transistor-switching times.

4. **Time Base Generators:** General features of a time base signal, methods of generating time base waveform, Miller and Bootstrap time base generators – basic principles, Transistor miller time base generator, Transistor Bootstrap time base generator, Current time base generators.

5. **Synchronization & frequency Shaping:** Principles of Synchronization, Frequency division in sweep circuit, Astable relaxation circuits, Monostable relaxation circuits, Synchronization of a sweep circuit with symmetrical signals, Sine wave frequency division with a sweep circuit. Sampling gate Basic operating principles of sampling gates, Unidirectional and Bi-directional sampling gates, Reduction of pedestal in gate circuits, Applications of sampling gates.

6. **Classification of signals and systems**
 Continuous time signals (CT signals), discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Exponential, Classification of CT and DT signals - periodic and periodic, random signals, CT systems and DT systems, Basic properties of systems - Linear Time invariant Systems and properties.

TEXT BOOKS:
2. Solid State Pulse circuits - David A. Bell, PHI.

REFERENCES:
1. Pulse and Digital Circuits – A. Anand Kumar.
1. **Introduction**
 Wireless communication systems, Applications of wireless communication systems, Types of wireless communication systems, trends in mobile communication systems.

2. **Cellular Mobile Systems**: Basic cellular systems, Performance criteria, Uniqueness of mobile radio environment, Operation of cellular systems, analog & digital cellular systems.

3. **Elements of Cellular Radio System Design**
 Concept of frequency reuse channels, Co-channel interference reduction factor, Desired C/I from a normal case in an omnidirectional antenna system, Handoff mechanism, Cell splitting.

4. **Interference in Cellular Mobile System**
 Co-channel interference, Design of an omnidirectional antenna system in the worst case, Design of a directional antenna system, Lowering the antenna height, Power control, Reduction in CI by tilting antenna, umbrella pattern effect Adjacent-channel interference, Near-end – far-end interference, Effect on near-end mobile units.

5. **Frequency management, channel assignment and handoffs**
 Frequency management, Frequency-spectrum utilization, Set-up channels, Fixed channel assignment schemes, Non-fixed channel assignment schemes, Concept of handoff, Initiation of a hard handoff, Delaying a handoff, Forced handoffs, Queuing of handoffs, Power-difference handoffs, Mobile assisted handoff, Soft handoffs, Cell-site handoff, Intersystem handoff, dropout calls.

6. **GSM system overview**
 GSM system architecture, GSM radio subsystem, GSM channel types, Frame structure for GSM, Signal processing in GSM, GPRS and EDGE.

7. **Wireless Networks**
 Overview of Wi-Fi, WiMAX and Bluetooth technology (Basic features and physical specifications).

Text Books:
3. Wireless Communications: Principles and Practice by Theodore S. Rappaport; Pearson / PHI Publication

References:
1. Wireless Communications and Networks: 3G and Beyond by Iti Saha Misra; Tata McGraw Hill Publication
2. Wireless and Digital Communications by Dr. Kamilo Feher; PHI Publication

Department of Electronics and Communication Engineering, NIT Hamirpur (H.P.)
http://www.nith.ac.in/ece/
1. **Principles and Evolution of Switching Systems:**
 Basics of switching system, manual switching system, rotary dial telephone, signaling tones, Strowger switching components, step-by-step switching, design for 100 line, 1000 line, 10,000 line exchange, touch tone dial telephone, cross bar switching and exchange organization. Four wire concept, operation of hybrid, echo suppressors. Centralized and distributed SPC, software architecture, application software, enhanced services offered by SPC.

2. **Space Division Switching:**
 Two, three and multistage space division networks, blocking probability calculations using Lee’s method. Time Division Switching: Basic time division space switching, time division time switching, time multiplexed space switching, time multiplexed time switching. Combination Switching: S-T, T-S, S-T-S, T-S-T and other multistage combination switching.

3. **Traffic Engineering:**
 Network traffic load and parameters, GOS and blocking probability, modeling switching systems, incoming traffic and service time characterization, blocking models and loss systems, delay systems.

4. **Telephone Networks:**
 Subscriber loop systems, high data rate digital subscriber loop, asymmetric digital subscriber loop, VDSL, transmission plan, transmission systems, numbering plan, charging plan, basics of signaling, In channel signaling, common channel signaling.

5. **Data Networks:**
 Data transmission in PSTN, switching techniques for data transmission, OSI reference model, Satellite based data networks, fiber optic networks, protocol stacks, internetworking. ISDN services, transmission channels and user network interface in ISDN, ISDN protocol architecture, ISDN standards, ISDN numbering and addressing. Introduction to the basic principles of frame relay, TCP/IP and ATM.

Text Books:

Reference Book:

1. **Introduction to MEMS**
 Introduction to MEMS and Microsystems, Materials and Substrates for MEMS, Sensors/Transducers, Sensors characterization and classifications, microactuators, Application of MEMS.

2. **Material Properties**
 MEMS materials, structural and sacrificial materials, properties of silicon, mechanical, electrical and thermal properties of materials, Basic modeling of elements in electrical and mechanical systems.

3. **MEMS Fabrication**
 MEMS Fabrication Technologies, single crystal growth, micromachining, photolithography, microsterolithography, thin film deposition, impurity doping, diffusion, etching, bulk and surface micromachining, etch stop technique and microstructure, LIGA.

4. **Mechanical Sensors & Actuators**

5. **Magnetic Sensors**
 Magnetic material for MEMS, magnetic sensing and detection, mannetoresistive sensors, hall effect, magnetodiode, megnetotransitors, MEMS magnetic sensors, RF MEMS.

6. **Thermal Sensors:**
 Temperature coefficient of resistance, Thermo-electricity, Thermocouples, Thermal and temperature sensors, heat pump, micromachined thermocouple probe, thermal flow sensors, shape memory alloy.

Text Books:
1. Analysis and Design Principles of MEMS Devices by Minhang Bao, ELSEVIER.

References
1. **Revision of basic Digital systems:**

2. **Digital system Design:**
 Top down Approach to Design, Case study. Data Path, Control Path, Controller behavior and Design, Case study Mealy & Moore Machines, Timing of sequential circuits, Pipelining, Resource sharing, FSM issues (Starring state, Power on Reset, State diagram optimization, State Assignment, Asynchronous Inputs, Output Races, fault Tolerance.

3. **HDL for synthesis:**

4. **FPGA design:**

5. **SoC design:**
 System-level and SoC design methodologies and tools, HW/SW Co-design, analysis, partitioning, real-time scheduling, hardware acceleration, Virtual platform models, co-simulation and FPGAs for prototyping of HW/SW systems, Introduction to SystemC, SoC and IP integration, verification and test.

Textbooks:

References:
1. **Characteristics of passive IC components at RF frequencies:**
 Interconnects, resistors, capacitors, inductors and transformers – Transmission lines. Noise – classical two-port noise theory, noise models for active and passive components

2. **High frequency amplifier design:**
 Zeros as bandwidth enhancers, shunt-series amplifier, f_T doublers, neutralization and unilateralization

3. **Low noise amplifier design:**
 LNA topologies, power constrained noise optimization, linearity and large signal performance

4. **Mixers:**
 Nonlinear systems as linear mixers, multiplier-based mixers, subsampling mixers, diode-ring mixers

5. **RF power amplifiers:**
 Class A, AB, B, C, D, E and F amplifiers, modulation of power amplifiers, design and linearity considerations

6. **Oscillators & synthesizers:**
 Basic topologies, VCO, describing functions, resonators, negative resistance oscillators, synthesis with static moduli, synthesis with dithering moduli, combination synthesizers – phase noise considerations.

Text Books:

Reference Books:
1. **Operational Amplifier Design** using CMOS as well as Bipolar technologies. Linear and non linear applications of operational amplifiers. Active filters, response characteristics of Butter worth, Chebyshev and causal filters. Design and analysis of higher order filters of all types.

2. **Design of Super Buffer Circuits** for driving large capacitive loads. Design and analysis CMOS Schmitt trigger circuit.

3. **Comparators** and their characteristics zero crossing detector, voltage limiters, absolute value detectors, sample and hold circuit.

5. **Design and analysis of oscillator circuits** using transistors and Op-Amps. Phase shift, Wein Bridge and quadrature oscillators. Square wave, triangular wave, saw tooth wave generators and voltage controlled oscillator.

6. **Differential and Feedback Amplifiers** and their analysis.

Text Books:

References:
1. **Introduction**
Introduction and levels of abstraction, modeling and hierarchical design concepts, Languages, Compilation & Simulation, concurrency, Logic value system

2. **Language concepts**
Lexical conventions, data types, modules and ports, behavioral modeling, dataflow modeling, structural modelling.

3. **RTL Design**
Control & Data partitioning, Synthesis concepts, non synthesizable constructs, operators, expressions, conditional statements, post synthesis simulation.

4. **Hardware modules**
Boolean equations, Encoders, Decoders, multiplexers, cascaded multiplexers, adders, comparators, multipliers, sorters, shifters, static and dynamic memories, Mealy & Moore finite state machine, Implementation on FPGA

Text Books:

References:
1. **Introduction on Microwaves**
 Frequency allocations and frequency plans, Microwave waveguide, Rectangular waveguide and its analysis, circular waveguide, modes of propagation, dominant modes, cut off wavelength, mode excitation.

2. **Microwave generators and amplifiers**
 Limitations of conventional tubes at microwave frequency, reflex klystron, two and multi cavity klystron amplifiers and oscillators and their analysis, Basics on Magnetrons and traveling wave tube and their applications.

3. **Microwave devices**
 Scattering matrix of microwave waveguide junction, properties of S-matrix, E-plane tee, H-plane tee, magic tee, attenuators, directional couplers, ferrite devices, Faraday rotation, gyrator, isolator, circulators and cavity resonators.

4. **Microwave solid-state devices**
 Gunn diode and its modes of operation, Avalanche IMPATT diode, TRAPATT diode, operations and V-I characteristics of Tunnel diode, Schottky diode, Backward diode and Varactor diodes, PIN diode and its applications.

5. **Microwave Measurements**
 Measurement of standing wave ratio, measurement of wavelength and frequency, measurement of power, radiation pattern measurement of antenna.

6. **Micro-Strip Lines**
 Introduction on Micro strip lines, characteristic impedance of micro strip lines, losses in micro strip lines, quality factor of micro strip, parallel strip lines, coplanar strip lines and shielded strip lines.

7. **Microwave Link**
 Microwave radio station, microwave transmitter and receiver, multiplexing equipment, microwave link.

Text Books:
1. Foundations for Microwave Engineering, International student edition, R E.Collins
2. Microwave Engg by M Kulkarni,

Reference Books:
1. Microwave Engg, David M. Pozar, Wily Publication
2. Microwave Engineering by A Das and S K Das
3. Microwave Engineering Rajeswari Chatterjee
1. **Principles of direct spread spectrum**

2. **Frequency Hopped Systems**
 Concepts and characteristics, Modulations, MFSK, Hybrid Systems, Frequency Synthesizers, Direct Frequency Synthetizer, Digital Frequency Synthesizer, Indirect Frequency Synthesizers.

3. **Spreading Code Acquisition and Tracking**
 Initial Code acquisition, Acquisition strategy: Serial Search, Parallel Search, multi-dwell detection, false alarm and miss probability for matched filter receiver, False alarm and miss probability for radiometer, mean overall acquisition time for serial search.

4. **Performance of Spread Spectrum System**
 Link performance of direct sequence spread spectrum CDMA in (i) Additive White Noise Channel (ii) Multipath fading Channel. Concept of Rake Receiver, Performance of RAKE receiver in multipath fading.

5. **CDMA Systems**
 CDMA-IS-95: Forward link Channels, Reverse link Channels, Power Controls and Handoff Procedure in IS-95, Overview of CDMA based 3G Systems.

Text Books:

References:
1. **Introduction to Data Communication**

2. **Physical Layer**
 Data and Signals, Digital and Analog transmission, Transmission Media, Wireless transmission, Switching

3. **Data Link Layer**
 Data link layer design issues, Services provided to Network layers, Framing, Error control, Flow control, Error detection and correction, Elementary data link protocols, An unrestricted Simplex protocol, A Simplex Stop-and-Wait protocol, Simplex Protocol for a noisy channel, Sliding Window protocols, A protocol using go-back-N, A protocol using selective repeat, Example data link protocol-HDLC, PPP.

4. **Medium Access Sublayer**

5. **Network Layer**
 Network Layer Design issue, Logical Addressing, Address Mapping, Error Reporting and Multicasting, Delivery Forwarding and Routing.

6. **Transport Layer**
 Process to Process Delivery: UDP, TCP and SCTP.

7. **Application Layer**
 Design issues of the layer, Domain Name systems, File Transfer, http, web documents, Virtual Terminals.

Text Books:
1. J Frauzon “Computer Communication and Networks”.
2. W. Stallings, “Data and computer communication”, PHI.

References:
2. Wayne Tomasi “Introduction to Data Communications and Networking” Pearson.
<table>
<thead>
<tr>
<th>ECE-424(A)</th>
<th>OPTICAL NETWORKS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

1. **Introduction to Optical Network**
 Services, Circuit Switching, Packet Switching, Optical Networks, Optical Layer, Transparency and All Optical Networks, Optical Packet Switching, Transmission Basics, Network Evolution.

2. **Optical Amplifiers**
 Stimulated Emission, Spontaneous Emission, Erbium Doped Fiber amplifiers, Raman amplifiers, Semiconductor Optical Amplifiers, Cross talk in SOAs.

3. **Multiplexers and Filters to Wavelength Converters**

4. **Transmission System Engineering**

5. **Client Layers of the Optical Layer**
 SONET/SDH, ATM, IP, Storage Area Networks, Gigabit and 10-Gigabit Ethernet.

6. **WDM Network Elements & Design**

7. **Access Networks**
 Network Architecture Overview, Enhanced HFC, and fiber to the Curb (FTTC).

Textbooks/References
1. Optical Networks: A practical Perspective. Ramaswami & K.N. Sivarajan Morgan
1. Introduction
 Wireless sensor networks: the vision, Networked wireless sensor devices Applications of wireless sensor networks, Key design challenges

2. Network deployment
 Structured versus randomized deployment, Network topology, Connectivity in geometric random graphs, Connectivity using power control, Coverage metrics, Mobile deployment

3. Localization and Time synchronization
 Key issues, Localization approaches, Coarse-grained node localization using minimal information, Fine-grained node localization using detailed information, Network-wide localization, Theoretical analysis of localization techniques, Key issues of time synchronization, Traditional approaches, Fine-grained clock synchronization, Coarse-grained data synchronization

4. Wireless characteristics and Medium-access
 Wireless link quality, Radio energy considerations, The SINR capture model for interference, Traditional MAC protocols, Energy efficiency in MAC protocols, Asynchronous sleep techniques, Sleep-scheduled techniques, and Contention-free protocols.

5. Sleep-based topology control and Energy-efficient routing
 Constructing topologies for connectivity, Constructing topologies for coverage, Set K-cover algorithms, Cross-layer issues, Metric-based approaches, Routing with diversity, Multi-path routing, Lifetime-maximizing energy-aware routing techniques, Geographic routing, Routing to mobile sinks

6. Data-centric networking
 Data-centric routing, Data-gathering with compression, Querying, Data-centric storage and retrieval, the database perspective on sensor networks

7. Transport reliability and congestion control
 Basic mechanisms and tunable parameters, Reliability guarantees, Congestion control, Real-time scheduling

Text/Reference Books:
1. Digital image fundamentals
 Image acquisition, representation, visual perception, quality measures, sampling and quantization, basic relationship between pixels, imaging geometry, color spaces, Video spaces, analog and digital video interfaces, video standards.

2. Two dimensional systems
 Properties, analysis in spatial, frequency and transform domains.

3. Image transforms
 DFT, DCT, Sine, Hadamard, Haar, Slant, KL transform, Wavelet transform. Image enhancement – point processing, spatial filtering,

4. Image restoration
 Inverse filtering, de-blurring. Video processing – display enhancement, video mixing, video scaling, scan rate conversion.

5. Image compression

6. Video compression
 Motion estimation, intra and interframe prediction, perceptual coding, standards - MPEG, H.264 Image segmentation – feature extraction, region oriented segmentation, descriptors, morphology, Image recognition.

Text/Reference Books:
1. **Linear Block Codes**
 The Repetition codes, Vector space over binary field, Syndrome Error Detection, Minimum distance of block codes, Hamming codes, Error detection and correction, Shortened and extended linear block codes.

2. **Cyclic Codes**
 Definition, Polynomials, Generator polynomials, Encoding and Decoding, Generator and Parity check matrices for cyclic codes. Linear feedback shift registers for encoding and decoding cyclic codes, The Meggitt decoder.

3. **BCH and RS codes**
 Galois fields, $\text{GF}(2^3)$, $\text{GF}(2^4)$, $\text{GF}(2^5)$, Primitive field elements, Irreducible and primitive polynomials, Minimal Polynomials, Definition and construction of binary BCH Codes, Decoding of BCH Codes, Error location Polynomial, PGZ - Decoder, RS codes, The Berlekamp algorithm.

4. **Convolution Codes**
 Convolution codes and encoders, Convolution encoder representation, The Veterbi decoder.

5. **LDPC and Turbo Codes**
 Introduction to LDPC and Turbo Codes.

Text Books:
2. S. Gravano, “Introduction to Error Control Codes”, Oxford University Press.

Reference Books:
1. **Introduction**

2. **Radar systems**
 Elementary Radar signal processing, RADAR cross section, RADAR detection, range & Doppler measurements, tracking.

3. **CW Radar**

4. **Navigation Aids**

Books Recommended:
1. **Introduction:**
 Need for low power VLSI chips, Sources of power dissipation on Digital Integrated circuits, Physics of power dissipation in CMOS devices, Dynamic dissipation in CMOS, leakage power dissipation, Impact of technology Scaling, Technology & Device innovation.

2. **Low Power Design:**
 Circuit Level: Transistor & gate sizing, Circuit techniques for leakage power reduction, supply voltage scaling techniques, DTCMOS, MTCMOS, low voltage low power design, Flip Flops & Latches design,
 Logic Level: Gate reorganization, signal gating, logic encoding, state machine encoding, pre-computation logic.
 Low Power Architecture & Systems: Power & performance management, switching activity reduction, parallel architecture with voltage reduction, flow graph transformation, Low Power bus.

3. **Power Estimation**
 Simulation Power analysis: SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state power, gate level capacitance estimation, data correlation analysis in DSP systems,
 Probabilistic power analysis: Random logic signals, probability & frequency, probabilistic power analysis techniques.

4. **Low Power Clock Distribution**
 Power dissipation in clock distribution, single driver Vs distributed buffers, Zero skew Vs tolerable skew, Various clock distribution networks

Text Books:

Reference Books:
1. **Interconnects**

2. **Scaling issues in VLSI Devices and Interconnects**
 Scaling and its effect on performance parameters.

3. **Interconnect Delay**
 Methods for improving interconnect RC delay

4. **CMOS Repeater Driven Interconnects**

5. **Transmission line model of Interconnects**
 Lossy line, Termination Conditions, Crosstalk and Noise in interconnects.

6. **Advanced Interconnect Techniques**
 Reduced-swing Circuits, Current-mode Transmission Techniques, Clocking of high-speed systems, CNT and Optical Interconnects.

7. **Packaging Techniques**
 Introduction to packaging, Package design considerations, VLSI Assembly Techniques, Packaging fabrication technology, THM, Surface Mounting.

Text Books:

Reference Books:
1. Introduction of Nanoelectronics
The “Top-Down” Approach; The “Bottom-Up” Approach; Why Nanoelectronics; Nanotechnology Potential; MOS Scaling theory-Issues in scaling MOS transistors; Short channel effects; Requirements for non-classical MOS transistor; Metal gate transistor-Motivation, requirements, Integration Issues; High-k gate based MOSFET-Motivation, requirements, integration issues of high-k.

2. Quantum Mechanics of Electrons
General postulates of quantum mechanics; Time-independent Schrodinger’s equation-boundary conditions on the Wave function; Analogies between quantum mechanics and classical electromagnetic; probabilistic current density; Multiple particle systems; Spin and angular Momentum.

3. Free and Confined Electrons
Free Electrons; Free electron gas theory of metals; Electrons confined to a bounded region of space and quantum numbers; Partially confined electrons- finite potential wells; Quantum wells; Quantum wires; Quantum dots.

4. Tunnel Junctions and Applications of Tunneling
Tunneling through a potential barrier; Potential energy profiles for material interfaces; Applications of tunneling; Coulomb blockade, Single-Electron Transistor (SET).

5. Germanium Nano MOSFETs
Strain, Quantization; Advantages of germanium over silicon; PMOS versus NMOS; Compound semiconductors - material properties; MESFETs; Compound semiconductors MOSFETs in the context of channel quantization and strain; Hetero structure MOSFETs exploiting novel materials, strain, quantization.

6. Non-Conventional MOSFET Structures
SOI-PDSOI and FDSOI; Ultrathin body SOI-double gate transistors, integration issues; Vertical transistors–FinFET and Surround gate FET; Carbon Nanotube Transistors (CNT); Semiconductor Nanowire FETs and SETs; Molecular SETs and Molecular Electronics.

Text Books:
2. Fundamental of Nanoelectronics, George W. Hanson Pearson Education.

References:
1. Silicon VLSI Technology, Plummer, Deal, Griffin, Pearson Education India.
1. **Introduction to Hierarchical and Structured Design**
 Role of CAD Tools in the VLSI design process, CAD Algorithms for switch level and circuits simulation, Techniques and algorithms for symbolic layout, Algorithms for physical design – Placement and routing Algorithms, Compaction, Circuit extraction and Testing.

2. **Specification of Combinational Systems Using VHDL**
 Introduction to VHDL, Basic language element of VHDL, Behavioral Modeling, Data flow modeling, Structural modeling, Subprograms and overloading, VHDL description of gates.

3. **Description and Design of Sequential Circuits**
 Standard combinational modules, Design of a Serial adder with accumulator, State graph for control network, Design of a binary multiplier, Multiplication of a signed binary number, Design of a binary divider.

4. **Register-Transfer Level Systems**
 Execution graph, Organization of system, Implementation of RTL Systems, Design of RTL systems, Analysis of RTL systems.

5. **Data Subsystems**
 Storage modules, Functional modules, Data paths, Control subsystems, Micro programmed controller, Structure of a micro programmed controller, Micro instruction format, Micro instruction sequencing, Micro instruction Timing, Basic component of a micro system, Memory subsystem.

6. **I/O Subsystem**
 Processors, Operation of the computer and cycle time. Binary decoder, Binary encoder, Multiplexers and demultiplexers, Floating Point arithmetic-representation of floating point number, Floating point multiplication, Adders, Multipliers.

7. **PLA based synthesis**
 Multilevel logic synthesis, Logic optimization, Logic simulation, Compiled and event simulators, Relative advantages and disadvantages, Layout Algorithms, Circuit partitioning, Placement and routing algorithms, Automatic test program generation, Combinational testing, D-Algorithm and PODEM algorithm, Scan-based testing of sequential circuits, Testability measures for circuits.

Text Books

References
2. Douglas Perry, “VHDL”, MGH.